009B Sample Midterm 2, Problem 3
From Math Wiki
Revision as of 13:52, 18 April 2016 by
MathAdmin
(
talk
|
contribs
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to navigation
Jump to search
Evaluate:
a)
∫
1
2
(
2
t
+
3
t
2
)
(
4
t
2
−
5
t
)
d
t
{\displaystyle \int _{1}^{2}{\bigg (}2t+{\frac {3}{t^{2}}}{\bigg )}{\bigg (}4t^{2}-{\frac {5}{t}}{\bigg )}~dt}
b)
∫
0
2
(
x
3
+
x
)
x
4
+
2
x
2
+
4
d
x
{\displaystyle \int _{0}^{2}(x^{3}+x){\sqrt {x^{4}+2x^{2}+4}}~dx}
Foundations:
How would you integrate
∫
(
2
x
+
1
)
x
2
+
x
d
x
?
{\displaystyle \int (2x+1){\sqrt {x^{2}+x}}~dx?}
You could use
u
{\displaystyle u}
-substitution. Let
u
=
x
2
+
x
.
{\displaystyle u=x^{2}+x.}
Then,
d
u
=
(
2
x
+
1
)
d
x
.
{\displaystyle du=(2x+1)~dx.}
Thus,
∫
(
2
x
+
1
)
x
2
+
x
d
x
=
∫
u
=
2
3
u
3
/
2
+
C
=
2
3
(
x
2
+
x
)
3
/
2
+
C
.
{\displaystyle {\begin{array}{rcl}\displaystyle {\int (2x+1){\sqrt {x^{2}+x}}~dx}&=&\displaystyle {\int {\sqrt {u}}}\\&&\\&=&\displaystyle {{\frac {2}{3}}u^{3/2}+C}\\&&\\&=&\displaystyle {{\frac {2}{3}}(x^{2}+x)^{3/2}+C.}\\\end{array}}}
Solution:
(a)
Step 1:
We multiply the product inside the integral to get
∫
1
2
(
2
t
+
3
t
2
)
(
4
t
2
−
5
t
)
d
t
=
∫
1
2
(
8
t
3
−
10
+
12
−
15
t
3
)
d
t
=
∫
1
2
(
8
t
3
+
2
−
15
t
−
3
)
d
t
.
{\displaystyle {\begin{array}{rcl}\displaystyle {\int _{1}^{2}{\bigg (}2t+{\frac {3}{t^{2}}}{\bigg )}{\bigg (}4t^{2}-{\frac {5}{t}}{\bigg )}~dt}&=&\displaystyle {\int _{1}^{2}{\bigg (}8t^{3}-10+12-{\frac {15}{t^{3}}}{\bigg )}~dt}\\&&\\&=&\displaystyle {\int _{1}^{2}(8t^{3}+2-15t^{-3})~dt.}\\\end{array}}}
Step 2:
We integrate to get
∫
1
2
(
2
t
+
3
t
2
)
(
4
t
2
−
5
t
)
d
t
=
2
t
4
+
2
t
+
15
2
t
−
2
|
1
2
.
{\displaystyle \int _{1}^{2}{\bigg (}2t+{\frac {3}{t^{2}}}{\bigg )}{\bigg (}4t^{2}-{\frac {5}{t}}{\bigg )}~dt=\left.2t^{4}+2t+{\frac {15}{2}}t^{-2}\right|_{1}^{2}.}
We now evaluate to get
∫
1
2
(
2
t
+
3
t
2
)
(
4
t
2
−
5
t
)
d
t
=
2
(
2
)
4
+
2
(
2
)
+
15
2
(
2
)
2
−
(
2
+
2
+
15
2
)
=
36
+
15
8
−
4
−
15
2
=
211
8
.
{\displaystyle {\begin{array}{rcl}\displaystyle {\int _{1}^{2}{\bigg (}2t+{\frac {3}{t^{2}}}{\bigg )}{\bigg (}4t^{2}-{\frac {5}{t}}{\bigg )}~dt}&=&\displaystyle {2(2)^{4}+2(2)+{\frac {15}{2(2)^{2}}}-{\bigg (}2+2+{\frac {15}{2}}{\bigg )}}\\&&\\&=&\displaystyle {36+{\frac {15}{8}}-4-{\frac {15}{2}}}\\&&\\&=&\displaystyle {{\frac {211}{8}}.}\end{array}}}
(b)
Step 1:
We use
u
{\displaystyle u}
-substitution. Let
u
=
x
4
+
2
x
2
+
4.
{\displaystyle u=x^{4}+2x^{2}+4.}
Then,
d
u
=
(
4
x
3
+
4
x
)
d
x
{\displaystyle du=(4x^{3}+4x)dx}
and
d
u
4
=
(
x
3
+
x
)
d
x
.
{\displaystyle {\frac {du}{4}}=(x^{3}+x)dx.}
Also, we need to change the bounds of integration.
Plugging in our values into the equation
u
=
x
4
+
2
x
2
+
4
,
{\displaystyle u=x^{4}+2x^{2}+4,}
we get
u
1
=
0
4
+
2
(
0
)
2
+
4
=
4
{\displaystyle u_{1}=0^{4}+2(0)^{2}+4=4}
and
u
2
=
2
4
+
2
(
2
)
2
+
4
=
28.
{\displaystyle u_{2}=2^{4}+2(2)^{2}+4=28.}
Therefore, the integral becomes
1
4
∫
4
28
u
d
u
.
{\displaystyle {\frac {1}{4}}\int _{4}^{28}{\sqrt {u}}~du.}
Step 2:
We now have:
∫
0
2
(
x
3
+
x
)
x
4
+
2
x
2
+
4
d
x
=
1
4
∫
4
28
u
d
u
=
1
6
u
3
2
|
4
28
=
1
6
(
28
3
2
−
4
3
2
)
=
1
6
(
(
28
)
3
−
(
4
)
3
)
=
1
6
(
(
2
7
)
3
−
2
3
)
.
{\displaystyle {\begin{array}{rcl}\displaystyle {\int _{0}^{2}(x^{3}+x){\sqrt {x^{4}+2x^{2}+4}}~dx}&=&\displaystyle {{\frac {1}{4}}\int _{4}^{28}{\sqrt {u}}~du}\\&&\\&=&\displaystyle {\left.{\frac {1}{6}}u^{\frac {3}{2}}\right|_{4}^{28}}\\&&\\&=&\displaystyle {{\frac {1}{6}}(28^{\frac {3}{2}}-4^{\frac {3}{2}})}\\&&\\&=&\displaystyle {{\frac {1}{6}}(({\sqrt {28}})^{3}-({\sqrt {4}})^{3})}\\&&\\&=&\displaystyle {{\frac {1}{6}}((2{\sqrt {7}})^{3}-2^{3}).}\\\end{array}}}
So, we have
∫
0
2
(
x
3
+
x
)
x
4
+
2
x
2
+
4
d
x
=
28
7
−
4
3
.
{\displaystyle \int _{0}^{2}(x^{3}+x){\sqrt {x^{4}+2x^{2}+4}}~dx={\frac {28{\sqrt {7}}-4}{3}}.}
Final Answer:
(a)
211
8
{\displaystyle {\frac {211}{8}}}
(b)
28
7
−
4
3
{\displaystyle {\frac {28{\sqrt {7}}-4}{3}}}
Return to Sample Exam
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information