009B Sample Midterm 2, Problem 5
From Math Wiki
Revision as of 22:58, 2 February 2016 by
MathAdmin
(
talk
|
contribs
)
(Created page with "<span class="exam"> Evaluate the integral: ::<math>\int \tan^4 x ~dx</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations: |- |Re...")
(diff) ← Older revision |
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to navigation
Jump to search
Evaluate the integral:
∫
tan
4
x
d
x
{\displaystyle \int \tan ^{4}x~dx}
Foundations:
Review
u
{\displaystyle u}
-substitution and
trig identities
Solution:
Step 1:
First, we write
∫
tan
4
(
x
)
d
x
=
∫
tan
2
(
x
)
tan
2
(
x
)
d
x
{\displaystyle \int \tan ^{4}(x)~dx=\int \tan ^{2}(x)\tan ^{2}(x)~dx}
.
Using the trig identity
sec
2
(
x
)
=
tan
2
(
x
)
+
1
{\displaystyle \sec ^{2}(x)=\tan ^{2}(x)+1}
, we have
tan
2
(
x
)
=
sec
2
(
x
)
−
1
{\displaystyle \tan ^{2}(x)=\sec ^{2}(x)-1}
.
Plugging in the last identity into one of the
tan
2
(
x
)
{\displaystyle \tan ^{2}(x)}
, we get
∫
tan
4
(
x
)
d
x
=
∫
tan
2
(
x
)
(
sec
2
(
x
)
−
1
)
d
x
=
∫
tan
2
(
x
)
sec
2
(
x
)
d
x
−
∫
tan
2
(
x
)
d
x
=
∫
tan
2
(
x
)
sec
2
(
x
)
d
x
−
∫
(
sec
2
x
−
1
)
d
x
{\displaystyle \int \tan ^{4}(x)~dx=\int \tan ^{2}(x)(\sec ^{2}(x)-1)~dx=\int \tan ^{2}(x)\sec ^{2}(x)~dx-\int \tan ^{2}(x)~dx=\int \tan ^{2}(x)\sec ^{2}(x)~dx-\int (\sec ^{2}x-1)~dx}
,
using the identity again on the last equality.
Step 2:
So, we have
∫
tan
4
(
x
)
d
x
=
∫
tan
2
(
x
)
sec
2
(
x
)
d
x
−
∫
(
sec
2
x
−
1
)
d
x
{\displaystyle \int \tan ^{4}(x)~dx=\int \tan ^{2}(x)\sec ^{2}(x)~dx-\int (\sec ^{2}x-1)~dx}
.
For the first integral, we need to use
u
{\displaystyle u}
-substitution. Let
u
=
tan
(
x
)
{\displaystyle u=\tan(x)}
. Then,
d
u
=
sec
2
(
x
)
d
x
{\displaystyle du=\sec ^{2}(x)dx}
.
So, we have
∫
tan
4
(
x
)
d
x
=
∫
u
2
d
u
−
∫
(
sec
2
(
x
)
−
1
)
d
x
{\displaystyle \int \tan ^{4}(x)~dx=\int u^{2}~du-\int (\sec ^{2}(x)-1)~dx}
.
Step 3:
We integrate to get
∫
tan
4
(
x
)
d
x
=
u
3
3
−
(
tan
(
x
)
−
x
)
+
C
=
tan
3
(
x
)
3
−
tan
(
x
)
+
x
+
C
{\displaystyle \int \tan ^{4}(x)~dx={\frac {u^{3}}{3}}-(\tan(x)-x)+C={\frac {\tan ^{3}(x)}{3}}-\tan(x)+x+C}
.
Final Answer:
tan
3
(
x
)
3
−
tan
(
x
)
+
x
+
C
{\displaystyle {\frac {\tan ^{3}(x)}{3}}-\tan(x)+x+C}
Return to Sample Exam
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information