022 Sample Final A, Problem 1

From Math Wiki
Revision as of 18:38, 6 June 2015 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

Find all first and second partial derivatives of the following function, and demostrate that the mixed second partials are equal for the function


Foundations:  
1) Which derivative rules do you have to use for this problem?
2) What is the partial derivative of , with respect to ?
Answers:
1) You have to use the quotient rule and product rule. The quotient rule says that

so

The product rule says

This means

2) The partial derivative is , since we treat anything not involving as a constant and take the derivative with respect to . In more detail, we have

Solution:

Step 1:  
First, we start by finding the first partial derivatives. So we have to take the partial derivative of with respect to , and the partial derivative of with respect to . This gives us the following:
This gives us the derivative with respect to . To find the derivative with respect to , we do the following:
Step 2:  
Now we have to find the 4 second derivatives:

Final Answer:  

Return to Sample Exam