022 Sample Final A, Problem 1
Jump to navigation
Jump to search
Find all first and second partial derivatives of the following function, and demostrate that the mixed second partials are equal for the function
| Foundations: |
|---|
| 1)Which derivative rules do you have to use for this problem? |
| 2)What is the partial derivative of xy, with respect to x? |
| 1)You have to use the quotient rule, and product rule. The quotient rule says that , so . The product rule says . This means |
| 2) The partial derivative is y, since we treat anything not involving x as a constant and take the derivative with respect to x. So |
Solution:
| Foundations: |
|---|
| The word 'marginal' should make you immediately think of a derivative. In this case, the marginal is just the partial derivative with respect to a particular variable. |
| The teacher has also added the additional restriction that you should not leave your answer with negative exponents. |