004 Sample Final A, Problem 4
Jump to navigation
Jump to search
Graph the system of inequalities. Solution:
| Step 1: |
|---|
| First we replace the inequalities with equality. So , and . |
| Now we graph both functions. |
| Step 2: |
|---|
| Now that we have graphed both functions we need to know which region to shade with respect to each graph. |
| To do this we pick a point an equation and a point not on the graph of that equation. We then check if the |
| point satisfies the inequality or not. For both equations we will pick the origin. |
| Plugging in the origin we get, . Since the inequality is satisfied shade the side of |
| that includes the origin. We make the graph of , since the inequality is strict. |
| . Once again the inequality is satisfied. So we shade the inside of the circle. |
| We also shade the boundary of the circle since the inequality is |
| Final Answer: |
|---|
| The final solution is the portion of the graph that below and inside |
| The region we are referring to is shaded both blue and red. |
|
