009A Sample Midterm 2, Problem 1

From Math Wiki
Revision as of 13:41, 19 April 2017 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

Evaluate the following limits.

(a) Find  

(b) Find  

(c) Evaluate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) }


Foundations:  
Recall
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0} \frac{\sin x}{x}=1}


Solution:

(a)

Step 1:  
We begin by noticing that if we plug in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2}   into
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sqrt{x^2+12}-4}{x-2},}
we get   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{0}{0}.}
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(\sqrt{x^2+12}-4)}{(x-2)}\frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 2} \frac{x^2-4}{(x-2)(\sqrt{x^2+12}+4)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(\sqrt{x^2+12}+4)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 2} \frac{x+2}{\sqrt{x^2+12}+4}}\\ &&\\ & = & \displaystyle{\frac{4}{8}}\\ &&\\ & = & \displaystyle{\frac{1}{2}.} \end{array}}

(b)

Step 1:  
First, we write
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{x} \frac{x}{\sin(7x)}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0} \frac{3}{7} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\ &&\\ & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}.} \end{array}}
Step 2:  
Now, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\ &&\\ & = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\ &&\\ & = & \displaystyle{\frac{3}{7} (1)(1)}\\ &&\\ & = & \displaystyle{\frac{3}{7}.} \end{array}}

(c)

Step 1:  
We begin by looking at the graph of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\tan(x),}
which is displayed below.
009A MT2 1C GP.png
Step 2:  
We are taking a left hand limit. So, we approach  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{\pi}{2}}   from the left.
If we look at the graph from the left of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{\pi}{2}}   and go towards   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{2},}
we see that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tan(x)}   goes to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty.}
Therefore,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x)=\infty.}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3}{7}}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty}

Return to Sample Exam