009C Sample Midterm 2, Problem 1

From Math Wiki
Revision as of 09:30, 14 April 2017 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

Evaluate:

(a)  

(b)  


Foundations:  
1. L'Hôpital's Rule

        Suppose that    and    are both zero or both  

        If    is finite or  

        then  

2. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.


Solution:

(a)

Step 1:  
Let

        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {y}&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg (}{\frac {n-4}{n}}{\bigg )}^{n}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\bigg (}1-{\frac {4}{n}}{\bigg )}^{n}.}\end{array}}}

We then take the natural log of both sides to get
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \ln y=\ln {\bigg (}\lim _{n\rightarrow \infty }{\bigg (}1-{\frac {4}{n}}{\bigg )}^{n}{\bigg )}.}
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\ln y}&=&\displaystyle {\lim _{n\rightarrow \infty }\ln {\bigg (}1-{\frac {4}{n}}{\bigg )}^{n}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }n\ln {\bigg (}1-{\frac {4}{n}}{\bigg )}}\\&&\\&=&\displaystyle {\lim _{n\rightarrow \infty }{\frac {\ln {\bigg (}1-{\frac {4}{n}}{\bigg )}}{\frac {1}{n}}}.}\end{array}}}

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\ln y}&=&\displaystyle {\lim _{n\rightarrow \infty }{\frac {\ln {\bigg (}1-{\frac {4}{n}}{\bigg )}}{\frac {1}{n}}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {\ln {\bigg (}1-{\frac {4}{x}}{\bigg )}}{\frac {1}{x}}}}\\&&\\&{\overset {L'H}{=}}&\displaystyle {\lim _{x\rightarrow \infty }{\frac {{\frac {1}{{\big (}1-{\frac {4}{x}}{\big )}}}{\frac {4}{x^{2}}}}{{\big (}-{\frac {1}{x^{2}}}{\big )}}}}\\&&\\&=&\displaystyle {\lim _{x\rightarrow \infty }{\frac {-4x}{x-4}}}\\&&\\&=&\displaystyle {-4.}\end{array}}}

Step 4:  
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln y= -4,}   we know
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=e^{-4}.}
Now, we have

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}} & = & \displaystyle{\frac{\displaystyle{\lim_{n\rightarrow \infty} 1}}{\displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n-4}{n}\bigg)^n}}}\\ &&\\ & = & \displaystyle{\frac{1}{e^{-4}}}\\ &&\\ & = & \displaystyle{e^4.} \end{array}}

(b)

Step 1:  
First, we not that this is a geometric series with  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=\frac{1}{4}.}
Since  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |r|=\frac{1}{4}<1,}
this series converges.
Step 2:  
Now, we need to find the sum of this series.
The first term of the series is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1=\frac{1}{2}.}
Hence, the sum of the series is

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{a_1}{1-r}} & = & \displaystyle{\frac{\frac{1}{2}}{1-\frac{1}{4}}}\\ &&\\ & = & \displaystyle{\frac{\big(\frac{1}{2}\big)}{\big(\frac{3}{4}\big)}}\\ &&\\ & = & \displaystyle{\frac{2}{3}.} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{4}}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}}

Return to Sample Exam