009B Sample Midterm 1, Problem 2

From Math Wiki
Revision as of 12:58, 18 April 2016 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

Find the average value of the function on the given interval.


Foundations:  
The average value of a function on an interval is given by

Solution:

Step 1:  
Using the formula given in Foundations, we have:
Step 2:  
Now, we use -substitution. Let Then, and Also,
We need to change the bounds on the integral. We have and
So, the integral becomes
Step 3:  
We integrate to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f_{\text{avg}}} & = & \displaystyle{\left.\frac{u^6}{12}-\frac{u^5}{10}\right|_{1}^5}\\ &&\\ & = & \displaystyle{\left.u^5\bigg(\frac{u}{12}-\frac{1}{10}\bigg)\right|_{1}^5.}\\ \end{array}}
Step 4:  
We evaluate to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f_{\text{avg}}} & = & \displaystyle{5^5\bigg(\frac{5}{12}-\frac{1}{10}\bigg)-1^5\bigg(\frac{1}{12}-\frac{1}{10}\bigg)}\\ &&\\ & = & \displaystyle{3125\bigg(\frac{19}{60}\bigg)-\frac{-1}{60}}\\ &&\\ & = & \displaystyle{\frac{59376}{60}}\\ &&\\ & = & \displaystyle{\frac{4948}{5}.}\\ \end{array}}
Final Answer:  
    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{4948}{5}}

Return to Sample Exam