009B Sample Midterm 1, Problem 3

From Math Wiki
Revision as of 13:07, 18 April 2016 by MathAdmin (talk | contribs)
Jump to navigation Jump to search

Evaluate the indefinite and definite integrals.

a)
b) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{1}^{e}x^{3}\ln x~dx}


Foundations:  
1. Integration by parts tells us that
2. How would you integrate
You could use integration by parts.
Let and Then, and
Thus,

Solution:

(a)

Step 1:  
We proceed using integration by parts. Let and Then, and
Therefore, we have
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int x^{2}e^{x}~dx=x^{2}e^{x}-\int 2xe^{x}~dx.}
Step 2:  
Now, we need to use integration by parts again. Let and Then, and
Building on the previous step, we have

(b)

Step 1:  
We proceed using integration by parts. Let and Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\frac{1}{x}dx} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=\frac{x^4}{4}.}
Therefore, we have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_{1}^{e} x^3\ln x~dx} & = & \displaystyle{\left.\ln x \bigg(\frac{x^4}{4}\bigg)\right|_{1}^{e}-\int_1^e \frac{x^3}{4}~dx }\\ &&\\ & = & \displaystyle{\left.\ln x \bigg(\frac{x^4}{4}\bigg)-\frac{x^4}{16}\right|_{1}^{e}.}\\ \end{array}}
Step 2:  
Now, we evaluate to get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_{1}^{e} x^3\ln x~dx} & = & \displaystyle{\bigg((\ln e) \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg((\ln 1) \frac{1^4}{4}-\frac{1^4}{16}\bigg)}\\ &&\\ & = & \displaystyle{\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}}\\ &&\\ & = & \displaystyle{\frac{3e^4+1}{16}.}\\ \end{array}}
Final Answer:  
(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2e^x-2xe^x+2e^x+C}
(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3e^4+1}{16}}

Return to Sample Exam