009B Sample Final 1, Problem 7
From Math Wiki
Revision as of 12:20, 18 April 2016 by
MathAdmin
(
talk
|
contribs
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to navigation
Jump to search
a) Find the length of the curve
y
=
ln
(
cos
x
)
,
0
≤
x
≤
π
3
{\displaystyle y=\ln(\cos x),~~~0\leq x\leq {\frac {\pi }{3}}}
.
b) The curve
y
=
1
−
x
2
,
0
≤
x
≤
1
{\displaystyle y=1-x^{2},~~~0\leq x\leq 1}
is rotated about the
y
{\displaystyle y}
-axis. Find the area of the resulting surface.
Expand
Foundations:
Recall:
1.
The formula for the length
L
{\displaystyle L}
of a curve
y
=
f
(
x
)
{\displaystyle y=f(x)}
where
a
≤
x
≤
b
{\displaystyle a\leq x\leq b}
is
L
=
∫
a
b
1
+
(
d
y
d
x
)
2
d
x
.
{\displaystyle L=\int _{a}^{b}{\sqrt {1+{\bigg (}{\frac {dy}{dx}}{\bigg )}^{2}}}~dx.}
2.
∫
sec
x
d
x
=
ln
|
sec
(
x
)
+
tan
(
x
)
|
+
C
.
{\displaystyle \int \sec x~dx=\ln |\sec(x)+\tan(x)|+C.}
3.
The surface area
S
{\displaystyle S}
of a function
y
=
f
(
x
)
{\displaystyle y=f(x)}
rotated about the
y
{\displaystyle y}
-axis is given by
S
=
∫
2
π
x
d
s
{\displaystyle S=\int 2\pi x\,ds}
, where
d
s
=
1
+
(
d
y
d
x
)
2
.
{\displaystyle ds={\sqrt {1+{\bigg (}{\frac {dy}{dx}}{\bigg )}^{2}}}.}
Solution:
(a)
Expand
Step 1:
First, we calculate
d
y
d
x
.
{\displaystyle {\frac {dy}{dx}}.}
Since
y
=
ln
(
cos
x
)
,
d
y
d
x
=
1
cos
x
(
−
sin
x
)
=
−
tan
x
{\displaystyle y=\ln(\cos x),~{\frac {dy}{dx}}={\frac {1}{\cos x}}(-\sin x)=-\tan x}
.
Using the formula given in the Foundations section, we have
L
=
∫
0
π
/
3
1
+
(
−
tan
x
)
2
d
x
{\displaystyle L=\int _{0}^{\pi /3}{\sqrt {1+(-\tan x)^{2}}}~dx}
.
Expand
Step 2:
Now, we have:
L
=
∫
0
π
/
3
1
+
tan
2
x
d
x
=
∫
0
π
/
3
sec
2
x
d
x
=
∫
0
π
/
3
sec
x
d
x
.
{\displaystyle {\begin{array}{rcl}L&=&\displaystyle {\int _{0}^{\pi /3}{\sqrt {1+\tan ^{2}x}}~dx}\\&&\\&=&\displaystyle {\int _{0}^{\pi /3}{\sqrt {\sec ^{2}x}}~dx}\\&&\\&=&\displaystyle {\int _{0}^{\pi /3}\sec x~dx}.\\\end{array}}}
Expand
Step 3:
Finally,
L
=
ln
|
sec
x
+
tan
x
|
|
0
π
3
=
ln
|
sec
π
3
+
tan
π
3
|
−
ln
|
sec
0
+
tan
0
|
=
ln
|
2
+
3
|
−
ln
|
1
|
=
ln
(
2
+
3
)
.
{\displaystyle {\begin{array}{rcl}L&=&\ln |\sec x+\tan x|{\bigg |}_{0}^{\frac {\pi }{3}}\\&&\\&=&\displaystyle {\ln {\bigg |}\sec {\frac {\pi }{3}}+\tan {\frac {\pi }{3}}{\bigg |}-\ln |\sec 0+\tan 0|}\\&&\\&=&\displaystyle {\ln |2+{\sqrt {3}}|-\ln |1|}\\&&\\&=&\displaystyle {\ln(2+{\sqrt {3}})}.\end{array}}}
(b)
Expand
Step 1:
We start by calculating
d
y
d
x
{\displaystyle {\frac {dy}{dx}}}
.
Since
y
=
1
−
x
2
,
d
y
d
x
=
−
2
x
{\displaystyle y=1-x^{2},~{\frac {dy}{dx}}=-2x}
.
Using the formula given in the Foundations section, we have
S
=
∫
0
1
2
π
x
1
+
(
−
2
x
)
2
d
x
.
{\displaystyle S\,=\,\int _{0}^{1}2\pi x{\sqrt {1+(-2x)^{2}}}~dx.}
Expand
Step 2:
Now, we have
S
=
∫
0
1
2
π
x
1
+
4
x
2
d
x
.
{\displaystyle S=\int _{0}^{1}2\pi x{\sqrt {1+4x^{2}}}~dx.}
We proceed by using trig substitution. Let
x
=
1
2
tan
θ
{\displaystyle x={\frac {1}{2}}\tan \theta }
. Then,
d
x
=
1
2
sec
2
θ
d
θ
{\displaystyle dx={\frac {1}{2}}\sec ^{2}\theta \,d\theta }
.
So, we have
∫
2
π
x
1
+
4
x
2
d
x
=
∫
2
π
(
1
2
tan
θ
)
1
+
tan
2
θ
(
1
2
sec
2
θ
)
d
θ
=
∫
π
2
tan
θ
sec
θ
sec
2
θ
d
θ
.
{\displaystyle {\begin{array}{rcl}\displaystyle {\int 2\pi x{\sqrt {1+4x^{2}}}~dx}&=&\displaystyle {\int 2\pi {\bigg (}{\frac {1}{2}}\tan \theta {\bigg )}{\sqrt {1+\tan ^{2}\theta }}{\bigg (}{\frac {1}{2}}\sec ^{2}\theta {\bigg )}d\theta }\\&&\\&=&\displaystyle {\int {\frac {\pi }{2}}\tan \theta \sec \theta \sec ^{2}\theta d\theta }.\\\end{array}}}
Expand
Step 3:
Now, we use
u
{\displaystyle u}
-substitution. Let
u
=
sec
θ
{\displaystyle u=\sec \theta }
. Then,
d
u
=
sec
θ
tan
θ
d
θ
{\displaystyle du=\sec \theta \tan \theta \,d\theta }
.
So, the integral becomes
∫
2
π
x
1
+
4
x
2
d
x
=
∫
π
2
u
2
d
u
=
π
6
u
3
+
C
=
π
6
sec
3
θ
+
C
=
π
6
(
1
+
4
x
2
)
3
+
C
.
{\displaystyle {\begin{array}{rcl}\displaystyle {\int 2\pi x{\sqrt {1+4x^{2}}}~dx}&=&\displaystyle {\int {\frac {\pi }{2}}u^{2}du}\\&&\\&=&\displaystyle {{\frac {\pi }{6}}u^{3}+C}\\&&\\&=&\displaystyle {{\frac {\pi }{6}}\sec ^{3}\theta +C}\\&&\\&=&\displaystyle {{\frac {\pi }{6}}({\sqrt {1+4x^{2}}})^{3}+C}.\\\end{array}}}
Expand
Step 4:
We started with a definite integral. So, using Step 2 and 3, we have
S
=
∫
0
1
2
π
x
1
+
4
x
2
d
x
=
π
6
(
1
+
4
x
2
)
3
|
0
1
=
π
(
5
)
3
6
−
π
6
=
π
6
(
5
5
−
1
)
.
{\displaystyle {\begin{array}{rcl}S&=&\displaystyle {\int _{0}^{1}2\pi x{\sqrt {1+4x^{2}}}~dx}\\&&\\&=&\displaystyle {{\frac {\pi }{6}}({\sqrt {1+4x^{2}}})^{3}}{\bigg |}_{0}^{1}\\&&\\&=&\displaystyle {{\frac {\pi ({\sqrt {5}})^{3}}{6}}-{\frac {\pi }{6}}}\\&&\\&=&\displaystyle {{\frac {\pi }{6}}(5{\sqrt {5}}-1)}.\\\end{array}}}
Expand
Final Answer:
(a)
ln
(
2
+
3
)
{\displaystyle \ln(2+{\sqrt {3}})}
(b)
π
6
(
5
5
−
1
)
{\displaystyle {\frac {\pi }{6}}(5{\sqrt {5}}-1)}
Return to Sample Exam
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
More
View history
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information