Difference between revisions of "022 Sample Final A, Problem 1"

From Math Wiki
Jump to navigation Jump to search
 
Line 22: Line 22:
 
|-
 
|-
 
|2) The partial derivative is <math style="vertical-align: -4px">y</math>, since we treat anything not involving <math style="vertical-align: 0px">x</math> as a constant and take the derivative with respect to <math style="vertical-align: 0px">x</math>. In more detail, we have
 
|2) The partial derivative is <math style="vertical-align: -4px">y</math>, since we treat anything not involving <math style="vertical-align: 0px">x</math> as a constant and take the derivative with respect to <math style="vertical-align: 0px">x</math>. In more detail, we have
::<math style="vertical-align: 0px">\frac{\partial}{\partial x} xy = y\frac{\partial}{\partial x} x = y.</math>
+
::<math style="vertical-align: 0px">\frac{\partial}{\partial x} xy \,=\, y\frac{\partial}{\partial x} x \,=\, y.</math>
 
|}
 
|}
  

Latest revision as of 08:20, 7 June 2015

Find all first and second partial derivatives of the following function, and demostrate that the mixed second partials are equal for the function


Foundations:  
1) Which derivative rules do you have to use for this problem?
2) What is the partial derivative of , with respect to ?
Answers:
1) You have to use the quotient rule and product rule. The quotient rule says that

so

The product rule says

This means

2) The partial derivative is , since we treat anything not involving as a constant and take the derivative with respect to . In more detail, we have

Solution:

Step 1:  
First, we start by finding the first partial derivatives. So we have to take the partial derivative of with respect to , and the partial derivative of with respect to . This gives us the following:
This gives us the derivative with respect to . To find the derivative with respect to , we do the following:
Step 2:  
Now we have to find the 4 second derivatives, We have


Also,


Showing the equality of mixed partial derivatives,


Finally,


Final Answer:  
The first partial derivatives are:
The second partial derivatives are:

Return to Sample Exam