Difference between revisions of "008A Sample Final A, Question 17"
Jump to navigation
Jump to search
Line 2: | Line 2: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Foundations | + | !Foundations: |
|- | |- | ||
|1) How is secant related to either sine or cosine? | |1) How is secant related to either sine or cosine? | ||
Line 17: | Line 17: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! Final Answer A: | + | !Final Answer A: |
|- | |- | ||
|Since <math> \sec(x) = \frac{1}{\cos(x)} </math>, and the angle is in quadrant 2, <math> \sec(\frac{3\pi}{4}) = \frac{1}{\cos(\frac{3\pi}{4})} = \frac{1}{\frac{-1}{\sqrt{2}}} = -\sqrt{2}</math> | |Since <math> \sec(x) = \frac{1}{\cos(x)} </math>, and the angle is in quadrant 2, <math> \sec(\frac{3\pi}{4}) = \frac{1}{\cos(\frac{3\pi}{4})} = \frac{1}{\frac{-1}{\sqrt{2}}} = -\sqrt{2}</math> | ||
Line 23: | Line 23: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! Final Answer B: | + | !Final Answer B: |
|- | |- | ||
|The reference angle is <math> \frac{\pi}{6} </math> and is in the fourth quadrant. So tangent will be negative. Since the angle is 30 degees, using the 30-60-90 right triangle, we can conclude that <math>\tan(\frac{11\pi}{6}) = -\frac{\sqrt{3}}{3}</math> | |The reference angle is <math> \frac{\pi}{6} </math> and is in the fourth quadrant. So tangent will be negative. Since the angle is 30 degees, using the 30-60-90 right triangle, we can conclude that <math>\tan(\frac{11\pi}{6}) = -\frac{\sqrt{3}}{3}</math> | ||
Line 29: | Line 29: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | ! Final Answer C: | + | !Final Answer C: |
|- | |- | ||
|Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or <math>\frac{\pi}{3}</math> , So <math> \sin(-120) = \frac{\sqrt{3}}{2}</math> | |Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or <math>\frac{\pi}{3}</math> , So <math> \sin(-120) = \frac{\sqrt{3}}{2}</math> |
Latest revision as of 23:03, 25 May 2015
Question: Compute the following trig ratios: a) b) c)
Foundations: | |
---|---|
1) How is secant related to either sine or cosine? | |
2) What quadrant is each angle in? What is the reference angle for each? | Answer: |
1) | |
2) a) Quadrant 2, b) Quadrant 4, c) Quadrant 3. The reference angles are: , and 60 degrees or |
Solution:
Final Answer A: |
---|
Since , and the angle is in quadrant 2, |
Final Answer B: |
---|
The reference angle is and is in the fourth quadrant. So tangent will be negative. Since the angle is 30 degees, using the 30-60-90 right triangle, we can conclude that |
Final Answer C: |
---|
Sin(-120) = - sin(120). So you can either compute sin(120) or sin(-120) = sin(240). Since the reference angle is 60 degrees, or , So |