Difference between revisions of "022 Exam 2 Sample B, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 40: Line 40:
 
| Now we need to substitute back into our original variables using our original substitution <math style="vertical-align: -8%">u = e^{2x} + 1</math>
 
| Now we need to substitute back into our original variables using our original substitution <math style="vertical-align: -8%">u = e^{2x} + 1</math>
 
|-
 
|-
| to find&nbsp; <math style="vertical-align: -23%">\log(u) = \log(e^{2x} + 1).</math>
+
| to find&nbsp; <math style="vertical-align: -21%">\log(u) = \log(e^{2x} + 1).</math>
 
|}
 
|}
  
Line 46: Line 46:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Since this integral is an indefinite integral we have to remember to add a constant&thinsp; <math style="vertical-align: 0%">C</math> at the end.
+
|Since this integral is an indefinite integral we have to remember to add a constant&thinsp; <math style="vertical-align: 1%">C</math> at the end.
 
|}
 
|}
  

Revision as of 11:08, 18 May 2015

Find the antiderivative of

Foundations:  
This problem requires two rules of integration. In particular, you need
Integration by substitution (u - sub): If   is a differentiable functions whose range is in the domain of , then
We also need the derivative of the natural log since we will recover natural log from integration:

 Solution:

Step 1:  
Use a u-substitution with This means . After substitution we have
Step 2:  
We can now take the integral remembering the special rule:
Step 3:  
Now we need to substitute back into our original variables using our original substitution
to find 
Step 4:  
Since this integral is an indefinite integral we have to remember to add a constant  at the end.
Final Answer:  

Return to Sample Exam