Difference between revisions of "022 Exam 2 Sample B, Problem 6"

From Math Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
::<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>
 
::<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>
 
|-
 
|-
|For setup of the problem we need to integrate the region between the x - axis, the curve, x = 0 (the y-axis), and x = 2.
+
|For setup of the problem we need to integrate the region between the x - axis, the curve, <math style="vertical-align: 0%">x = 0</math> (the y-axis), and <math style="vertical-align: 0%">x = 2</math>.
 
|}
 
|}
  
Line 29: Line 29:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
::<math>\int _0^2 6x^2+2x \,dx \,=\, 6\cdot \frac{x^3}{3}+2\cdot \frac{x^2}{2} \Bigr|_{x\,=\,0}^2\,=\,2x^3+x^2 \Bigr|_{x\,=\,0}^2. </math>
\int _0^2 6x^2+2x \,dx &=& 2x^3+x^2 \Bigr|_0^2 \\
 
\end{array}</math>
 
 
|}
 
|}
  
Line 37: Line 35:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
| Now we need to evaluate to get:
+
|FInally, we need to evaluate:
 
|-
 
|-
 
|
 
|
::<math>2x^3 + x^2 \Bigr|_0^2 = (2(2)^3+(2)^2)-(0+0) = 20.</math>  
+
::<math>2x^3 + x^2 \Bigr|_{x\,=\,0}^2 = (2(2)^3+(2)^2)-(0+0) = 20.</math>  
 
|}
 
|}
  
Line 46: Line 44:
 
!Final Answer: &nbsp;
 
!Final Answer: &nbsp;
 
|-
 
|-
|<math>20</math>
+
|
 +
::<math>\int_0^{\,2} 6x^2 + 2x \,dx\,=\,20.</math>
 
|}
 
|}
  
 
[[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']]
 
[[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']]

Revision as of 06:58, 17 May 2015

Find the area under the curve of  between the -axis and .

Foundations:  
For solving the problem, we only require the use of the power rule for integration:
For setup of the problem we need to integrate the region between the x - axis, the curve, (the y-axis), and .

 Solution:

Step 1:  
Set up the integral:
Step 2:  
Using the power rule we have:
Step 3:  
FInally, we need to evaluate:
Final Answer:  

Return to Sample Exam