Difference between revisions of "022 Exam 2 Sample B, Problem 1"
Jump to navigation
Jump to search
Line 47: | Line 47: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |We can now apply all three advanced techniques. For <math style="vertical-align: -20%">f'(x)</math>, we | + | |We can now apply all three advanced techniques. For <math style="vertical-align: -20%">f'(x)</math>, we can use both the quotient and product rule to find |
|- | |- | ||
|<br> | |<br> | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | f'(x)&=&\frac{((x+1)^4)'(2x-5)(x+4)-((2x-5)(x+4))'(x+1)^4}{(2x-5)^2(x+4)^2} \\ | + | f'(x)&=&\displaystyle{\frac{((x+1)^4)'(2x-5)(x+4)-((2x-5)(x+4))'(x+1)^4}{(2x-5)^2(x+4)^2}} \\ |
− | &=&\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}. | + | \\ |
+ | &=&\displaystyle{\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}.} | ||
\end{array}</math> | \end{array}</math> | ||
| | | | ||
Line 67: | Line 68: | ||
\\ | \\ | ||
& = & g'\left(f(x)\right)\cdot f'(x)\\ | & = & g'\left(f(x)\right)\cdot f'(x)\\ | ||
− | \\& = &\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{((x+1)^4)'(2x-5)(x+4)-((2x-5)(x+4))'(x+1)^4}{(2x-5)^2(x+4)^2} \\ | + | \\& = &\displaystyle{\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{((x+1)^4)'(2x-5)(x+4)-((2x-5)(x+4))'(x+1)^4}{(2x-5)^2(x+4)^2}} \\ |
\\ | \\ | ||
− | &=&\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2} | + | &=&\displaystyle{\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}. } |
\end{array}</math> | \end{array}</math> | ||
Note that many teachers <u>'''do not'''</u> prefer a cleaned up answer, and may request that you <u>'''do not simplify'''</u>. In this case, we could write the answer as<br> | Note that many teachers <u>'''do not'''</u> prefer a cleaned up answer, and may request that you <u>'''do not simplify'''</u>. In this case, we could write the answer as<br> | ||
|- | |- | ||
| | | | ||
− | ::<math>y'=\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2} </math> | + | ::<math>y'=\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}. </math> |
|} | |} | ||
Line 81: | Line 82: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |<math>y'=\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2} </math> | + | |<math>y'=\left[\frac{(2x-5)(x+4)}{(x+1)^4} \right]\frac{(4(x+1)^3)(2x-5)(x+4)-(2(x+4)+(2x-5))(x+1)^4}{(2x-5)^2(x+4)^2}. </math> |
|} | |} | ||
[[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']] | [[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']] |
Revision as of 06:44, 17 May 2015
Find the derivative of
Foundations: | |
---|---|
This problem requires several advanced rules of differentiation. In particular, you need | |
The Chain Rule: If and are differentiable functions, then | |
The Product Rule: If and are differentiable functions, then | |
The Quotient Rule: If and are differentiable functions and , then | |
Additionally, we will need our power rule for differentiation: | |
| |
as well as the derivative of natural log: | |
|
Solution:
Step 1: |
---|
We need to identify the composed functions in order to apply the chain rule. Note that if we set , and |
|
we then have |
Step 2: | |
---|---|
We can now apply all three advanced techniques. For , we can use both the quotient and product rule to find | |
Step 3: |
---|
We can now use the chain rule to find |
Note that many teachers do not prefer a cleaned up answer, and may request that you do not simplify. In this case, we could write the answer as |
|
Final Answer: |
---|