Difference between revisions of "022 Exam 2 Sample A, Problem 6"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int x^n | + | ::<math style="vertical-align: -70%;">\int x^n\,dx\,=\,\frac{x^{n+1}}{n+1} +C,</math>  for <math style="vertical-align: -25%;">n\neq -1.</math> |
+ | |||
|- | |- | ||
|Geometrically, we need to integrate the region between the <math style="vertical-align: 0%">x</math>-axis, the curve, and the vertical lines <math style="vertical-align: -4%">x = 1</math> and <math style="vertical-align: -2%">x = 4</math>. | |Geometrically, we need to integrate the region between the <math style="vertical-align: 0%">x</math>-axis, the curve, and the vertical lines <math style="vertical-align: -4%">x = 1</math> and <math style="vertical-align: -2%">x = 4</math>. | ||
Line 32: | Line 33: | ||
\displaystyle{\int_1^{\,4} \frac{8}{\sqrt{x}}\,dx} & = & \displaystyle {\int_1^{\,4} 8x^{-1/2}\,dx}\\ | \displaystyle{\int_1^{\,4} \frac{8}{\sqrt{x}}\,dx} & = & \displaystyle {\int_1^{\,4} 8x^{-1/2}\,dx}\\ | ||
\\ | \\ | ||
− | & = & \displaystyle{\frac{8 x^{1/2}}{2} \Bigr|_{x=1}^4}\\ | + | & = & \displaystyle{\frac{8 x^{1/2}}{1/2} \Bigr|_{x=1}^4}\\ |
\\ | \\ | ||
− | & = & | + | & = & 16x^{1/2} \Bigr|_{x=1}^4. |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 44: | Line 45: | ||
|- | |- | ||
| | | | ||
− | ::<math> | + | ::<math>16x^{1/2} \Bigr|_{x=1}^4\,=\,16\cdot 4^{1/2} - 16\cdot 1^{1/2} \,=\, 32 - 16 \,=\, 16.</math> |
|} | |} | ||
Line 51: | Line 52: | ||
|- | |- | ||
| | | | ||
− | ::<math>\int_1^{\,4} \frac{8}{\sqrt{x}} \,dx\,=\, | + | ::<math>\int_1^{\,4} \frac{8}{\sqrt{x}} \,dx\,=\,16.</math> |
|} | |} | ||
[[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']] | [[022_Exam_2_Sample_A|'''<u>Return to Sample Exam</u>''']] |
Latest revision as of 06:54, 16 May 2015
Find the area under the curve of between and .
Foundations: |
---|
For solving the problem, we only require the use of the power rule for integration: |
|
Geometrically, we need to integrate the region between the -axis, the curve, and the vertical lines and . |
Solution:
Step 1: |
---|
Set up the integral: |
|
Step 2: |
---|
Using the power rule we have: |
|
Step 3: |
---|
Now we need to evaluate to get: |
|
Final Answer: |
---|
|