Difference between revisions of "022 Exam 2 Sample A, Problem 3"

From Math Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
|-
 
|-
 
|Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: -20%">dx=du/3</math>. After substitution we have
 
|Use a ''u''-substitution with <math style="vertical-align: -8%">u = 3x + 2.</math> This means <math style="vertical-align: 0%">du = 3\,dx</math>, or <math style="vertical-align: -20%">dx=du/3</math>. After substitution we have
::<math>\int \frac{1}{3x + 2} \,=\, \int \frac{1}{u}\,\frac{du}{3}\,=\,\frac{1}{3}\int\frac{1}{u}\,du.</math>
+
::<math>\int \frac{1}{3x + 2}\,dx \,=\, \int \frac{1}{u}\,\frac{du}{3}\,=\,\frac{1}{3}\int\frac{1}{u}\,du.</math>
 
|}
 
|}
  

Revision as of 06:44, 16 May 2015

Find the antiderivative of


Foundations:  
This problem requires two rules of integration. In particular, you need
Integration by substitution (u - sub): If   is a differentiable functions whose range is in the domain of , then
We also need the derivative of the natural log since we will recover natural log from integration:

 Solution:

Step 1:  
Use a u-substitution with This means , or . After substitution we have
Step 2:  
We can now take the integral remembering the special rule:
Step 3:  
Now we need to substitute back into our original variables using our original substitution
to find 
Step 4:  
Since this integral is an indefinite integral we have to remember to add a constant  at the end.
Final Answer:  

Return to Sample Exam