Difference between revisions of "022 Exam 2 Sample B, Problem 8"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function  <math...")
 
Line 1: Line 1:
 
<span class="exam">
 
<span class="exam">
 
Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function&thinsp; <math style="vertical-align: -8%">C = 120 - 30x + 2x^2.</math>
 
Find the quantity that produces maximum profit, given demand function <math style="vertical-align: -15%">p = 70 - 3x</math> and cost function&thinsp; <math style="vertical-align: -8%">C = 120 - 30x + 2x^2.</math>
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Foundations: &nbsp;
 +
|-
 +
|Recall that the '''demand function''', <math style="vertical-align: -25%">p(x)</math>, relates the price per unit <math style="vertical-align: -17%">p</math> to the number of units sold, <math style="vertical-align: 0%">x</math>.
 +
Moreover, we have several important important functions:
 +
|-
 +
|
 +
*<math style="vertical-align: -20%">C(x)</math>, the '''total cost''' to produce <math style="vertical-align: 0%">x</math> units;<br>
 +
*<math style="vertical-align: -20%">R(x)</math>, the '''total revenue''' (or gross receipts) from producing <math style="vertical-align: 0%">x</math> units;<br>
 +
*<math style="vertical-align: -20%">P(x)</math>, the '''total profit''' from producing <math style="vertical-align: 0%">x</math> units.<br>
 +
|-
 +
|In particular, we have the relations
 +
|-
 +
|
 +
::<math>P(x)=R(x)-C(x),</math>
 +
|-
 +
|and
 +
|-
 +
|
 +
::<math>R(x)=x\cdot p(x).</math>
 +
|-
 +
|Using these equations, we can find the maximizing production level by determining when the first derivative of profit is zero.
 +
 +
|}
 +
&nbsp;'''Solution:'''
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|'''Find the Profit Function:''' We have
 +
|-
 +
|
 +
::<math>R(x)\,=\,x\cdot p(x)\,=\,x\cdot (90-3x)\,=\,90x-3x^2.</math>
 +
|-
 +
|From this,
 +
|-
 +
|
 +
::<math>P(x)\,=\,R(x)-C(x)\,=\,90x-3x^2- \left(200-30x+x^2 \right)\,=\,120x-4x^2-200 .</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|'''Find the Maximum:''' The equation for marginal revenue is
 +
 +
|-
 +
|
 +
::<math>P(x)\,=\,120x-4x^2-200 .</math>
 +
|-
 +
|Applying our power rule to each term, we find
 +
|-
 +
|
 +
::<math>P'(x)\,=\,120-8x\,=\,8(15-x).</math>
 +
|-
 +
|The only root of this occurs at <math style="vertical-align: -5%">x=15</math>, and this is our production level to achieve maximum profit.
 +
|-
 +
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Final Answer: &nbsp;
 +
|-
 +
|Maximum profit occurs when we produce 15 items.
 +
|}
 +
 +
 +
[[022_Exam_2_Sample_B|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:41, 15 May 2015

Find the quantity that produces maximum profit, given demand function and cost function 

Foundations:  
Recall that the demand function, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x)} , relates the price per unit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} to the number of units sold, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} .

Moreover, we have several important important functions:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(x)} , the total cost to produce Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} units;
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(x)} , the total revenue (or gross receipts) from producing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} units;
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)} , the total profit from producing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} units.
In particular, we have the relations
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)=R(x)-C(x),}
and
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(x)=x\cdot p(x).}
Using these equations, we can find the maximizing production level by determining when the first derivative of profit is zero.

 Solution:

Step 1:  
Find the Profit Function: We have
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(x)\,=\,x\cdot p(x)\,=\,x\cdot (90-3x)\,=\,90x-3x^2.}
From this,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)\,=\,R(x)-C(x)\,=\,90x-3x^2- \left(200-30x+x^2 \right)\,=\,120x-4x^2-200 .}
Step 2:  
Find the Maximum: The equation for marginal revenue is
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x)\,=\,120x-4x^2-200 .}
Applying our power rule to each term, we find
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P'(x)\,=\,120-8x\,=\,8(15-x).}
The only root of this occurs at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=15} , and this is our production level to achieve maximum profit.
Final Answer:  
Maximum profit occurs when we produce 15 items.


Return to Sample Exam