Difference between revisions of "022 Exam 2 Sample A, Problem 6"

From Math Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|This problem requires two rules of integration.  In particular, you need
+
|For solving the problem we only require the use of the power rule for integration:
 
|-
 
|-
|'''Integration by substitution (U - sub):''' If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions, then
+
|<math>\int x^n dn = \frac{x^{n+1}}{n+1} + C</math>
 
|-
 
|-
 
+
|For setup of the problem we need to integrate the region between the x - axis, the curve, x = 1, and x = 4.
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(f\circ g)'(x) = f'(g(x))\cdot g'(x).</math>
 
|-
 
|<br>'''The Product Rule:'''  If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions, then
 
|-
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>(fg)'(x) = f'(x)\cdot g(x)+f(x)\cdot g'(x).</math>
 
|-
 
|<br>'''The Quotient Rule:'''  If <math style="vertical-align: -25%;">f</math> and <math style="vertical-align: -15%;">g</math> are differentiable functions and <math style="vertical-align: -21%;">g(x) \neq 0</math>&thinsp;, then
 
|-
 
|<br>&nbsp;&nbsp;&nbsp;&nbsp; <math>\left(\frac{f}{g}\right)'(x) = \frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{\left(g(x)\right)^2}. </math>
 
|-
 
|Additionally, we will need our power rule for differentiation:
 
|-
 
|
 
::<math style="vertical-align: -21%;">\left(x^n\right)'\,=\,nx^{n-1},</math> for <math style="vertical-align: -25%;">n\neq 0</math>,
 
|-
 
|as well as the derivative of natural log:
 
|-
 
|
 
::<math>\left(\ln x\right)'\,=\,\frac{1}{x}.</math>
 
|<br>
 
 
|}
 
|}
  

Revision as of 10:05, 15 May 2015

Find the area under the curve of    between and .

Foundations:  
For solving the problem we only require the use of the power rule for integration:
For setup of the problem we need to integrate the region between the x - axis, the curve, x = 1, and x = 4.

 Solution:

Step 1:  
Set up the integral:
Step 2:  
Using the power rule we have:
Step 3:  
Now we need to evaluate to get:
Final Answer:  
4

Return to Sample Exam