Difference between revisions of "Math 22 Partial Derivatives"

From Math Wiki
Jump to navigation Jump to search
Line 45: Line 45:
 
4. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial x\partial y}=f_{yx}</math>
 
4. <math>\frac{\partial}{\partial x}(\frac{\partial f}{\partial y})=\frac{\partial^2 f}{\partial x\partial y}=f_{yx}</math>
  
'''1)''' <math>f(x,y)=2x^2-4xy</math>, find <math>f_{xy}</math>
+
'''1)''' Find <math>f_{xy}</math>, given that <math>f(x,y)=2x^2-4xy</math>,  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
Line 54: Line 54:
 
|}
 
|}
  
'''2)''' <math>z=f(x,y)=3xy^2-2y+5x^2y^2</math>, find <math>f_{yx}</math>
+
'''2)''' Find <math>f_{yx}</math>, given that <math>z=f(x,y)=3xy^2-2y+5x^2y^2</math>,  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;

Revision as of 07:48, 18 August 2020

Partial Derivatives of a Function of Two Variables

 If , then the first partial derivatives of  with respect to  and  are the functions  and , defined as shown.
 
 
 
 
 
 We can denote  as  and  as 

Example: Find and of:

1)

Solution:  

2)

Solution:  

3)

Solution:  
(product rule +chain rule)

Higher-Order Partial Derivatives

1.

2.

3.

4.

1) Find , given that ,

Solution:  
Then,

2) Find , given that ,

Solution:  
Then,



Return to Topics Page

This page were made by Tri Phan