Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"

From Math Wiki
Jump to navigation Jump to search
 
Line 69: Line 69:
 
|Let <math>u=3x+5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{3}</math>
 
|Let <math>u=3x+5</math>, so <math>du=2dx</math>, so <math>dx=\frac{du}{3}</math>
 
|-
 
|-
|Consider <math>\int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C=}\ln |3x+5|+C</math>
+
|Consider <math>\int \frac{3}{3x+5}dx=\int\frac{3}{u}\frac{du}{3}=\int\frac{3}{3}\frac{1}{u}du=\int\frac{1}{u}du=\ln|u|+C=\ln |3x+5|+C</math>
 
|}
 
|}
  

Latest revision as of 08:08, 15 August 2020

Integrals of Exponential Functions

 Let  be a differentiable function of , then
 
 
 

Exercises 1 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  

4)

Solution:  
Let , so , so
Consider

Using the Log Rule

 Let  be a differentiable function of , then
 
 
 

Exercises 2 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  
Let , so , so
Consider


Return to Topics Page

This page were made by Tri Phan