Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"

From Math Wiki
Jump to navigation Jump to search
Line 41: Line 41:
 
==Using the Log Rule==
 
==Using the Log Rule==
 
   Let <math>u</math> be a differentiable function of <math>x</math>, then
 
   Let <math>u</math> be a differentiable function of <math>x</math>, then
   \int\frac{1}{x}=\ln\abs{x}+C
+
   <math>\int\frac{1}{x}=\ln\abs{x}+C</math>
 
    
 
    
   \int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln\abc{u}+C
+
   <math>\int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln\abc{u}+C</math>
  
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Revision as of 07:42, 15 August 2020

Integrals of Exponential Functions

 Let  be a differentiable function of , then
 
 
 

Exercises 1 Find the indefinite integral

1)

Solution:  

2)

Solution:  
Let , so , so
Consider

3)

Solution:  

4)

Solution:  
Let , so , so
Consider

Using the Log Rule

 Let  be a differentiable function of , then
 Failed to parse (unknown function "\abs"): {\displaystyle \int\frac{1}{x}=\ln\abs{x}+C}

 
 Failed to parse (unknown function "\abc"): {\displaystyle \int\frac{1}{u}\frac{du}{dx}dx=\int\frac{1}{u}du=\ln\abc{u}+C}

Return to Topics Page

This page were made by Tri Phan