Difference between revisions of "Math 22 Exponential and Logarithmic Integrals"

From Math Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
|}
 
|}
  
'''1)''' <math>\int e^{2x-5}dx</math>
+
'''4)''' <math>\int e^{2x-5}dx</math>
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;

Revision as of 07:39, 15 August 2020

Integrals of Exponential Functions

 Let  be a differentiable function of , then
 
 
 

Exercises 1 Find the indefinite integral

1)

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int 3e^{x}dx=3\int e^{x}=3e^{x}+C}

2)

Solution:  
Let , so , so
Consider Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int 3e^{3x}dx=\int 3e^{u}{\frac {du}{3}}=\int e^{u}du=e^{u}+C=e^{3x}+C}

3) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int (3e^{x}-6x)dx}

Solution:  
Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int (3e^{x}-6x)dx=\int (3e^{x})dx-\int 6xdx=3e^{x}-3x^{2}+C}

4) Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int e^{2x-5}dx}

Solution:  
Let , so , so Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle dx={\frac {du}{2}}}
Consider Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int e^{2x-5}dx=\int e^{u}{\frac {du}{2}}={\frac {1}{2}}\int e^{u}du={\frac {1}{2}}e^{u}+C={\frac {1}{2}}e^{2x-5}+C}

Return to Topics Page

This page were made by Tri Phan