Difference between revisions of "Math 22 Antiderivatives and Indefinite Integrals"

From Math Wiki
Jump to navigation Jump to search
 
Line 20: Line 20:
 
<math>5.\int x^n dx=\frac{x^{n+1}}{n+1}+C</math> for <math>n\ne -1</math>
 
<math>5.\int x^n dx=\frac{x^{n+1}}{n+1}+C</math> for <math>n\ne -1</math>
  
'''Exercises''' Find the indefinite integral
+
'''Exercises 1''' Find the indefinite integral
  
 
'''1)''' <math>\int 7dr</math>
 
'''1)''' <math>\int 7dr</math>
Line 49: Line 49:
 
|<math>\int 5x^{-3}dx=5\int x^{-3}dx=5\frac{x^{-3+1}}{-3+1}+C=\frac{-5}{2}x^{-2}+C</math>
 
|<math>\int 5x^{-3}dx=5\int x^{-3}dx=5\frac{x^{-3+1}}{-3+1}+C=\frac{-5}{2}x^{-2}+C</math>
 
|}
 
|}
 +
 +
'''Exercises 2''' Solve the initial value problems, given:
 +
 +
'''5)''' <math>f'(x)=\frac{1}{5}x-2</math> and <math>f(10)=-10</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Notice <math>f(x)=\int f'(x)dx=\int (\frac{1}{5}x-2)dx=\frac{1}{5}\frac{x^2}{2}-2x+C=\frac{1}{10}x^2-2x+C</math>
 +
|-
 +
|So, <math>f(x)=\frac{1}{10}x^2-2x+C</math>
 +
|-
 +
|we are given <math>f(10)=-10</math>, so <math>\frac{1}{10}(10)^2-2(10)+C=10</math>
 +
|-
 +
|Hence, <math>C=20</math>
 +
|-
 +
|Therefore, <math>f(x)=\frac{1}{10}x^2-2x+20</math>
 +
|}
 +
 +
'''6)''' <math>f'(x)=3x^2+4</math> and <math>f(-1)=-6</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Notice <math>f(x)=\int f'(x)dx=\int (3x^2+4)dx=x^3+4x+C</math>
 +
|-
 +
|So, <math>f(x)=x^3+4x+C</math>
 +
|-
 +
|we are given <math>f(-1)=-6</math>, so <math>(-1)^3+4(-1)+C=-6</math>
 +
|-
 +
|Hence, <math>C=-1</math>
 +
|-
 +
|Therefore, <math>f(x)=x^3+4x-1</math>
 +
|}
 +
  
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Latest revision as of 07:33, 12 August 2020

Antiderivatives

 A function  is an antiderivative of a function  when for every  in the domain of , 
 it follows that 
 The antidifferentiation process is also called integration and is denoted by  (integral sign).
  is the indefinite integral of 
 If  for all , we can write:
  for  is a constant.

Basic Integration Rules

for is a constant.

for

Exercises 1 Find the indefinite integral

1)

Solution:  

2)

Solution:  

3)

Solution:  

4)

Solution:  

Exercises 2 Solve the initial value problems, given:

5) and

Solution:  
Notice
So,
we are given , so
Hence,
Therefore,

6) and

Solution:  
Notice
So,
we are given , so
Hence,
Therefore,


Return to Topics Page

This page were made by Tri Phan