Difference between revisions of "Math 22 Natural Exponential Functions"

From Math Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
   Let <math>P</math> be the amount deposited, <math>t</math> the number of years, <math>A</math> the balance,  
 
   Let <math>P</math> be the amount deposited, <math>t</math> the number of years, <math>A</math> the balance,  
 
   and <math>r</math> the annual interest rate (in decimal form).
 
   and <math>r</math> the annual interest rate (in decimal form).
   1. Compounded <math>n</math> times per year: <math>A=P(1+\frac{r}{n})^{rt}</math>
+
   1. Compounded <math>n</math> times per year: <math>A=P(1+\frac{r}{n})^{nt}</math>
 
   2. Compounded continuously: <math>A=Pe^{rt}</math>
 
   2. Compounded continuously: <math>A=Pe^{rt}</math>
  
Line 16: Line 16:
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|<math>(8^{\frac{1}{2}})(2^{\frac{1}{2}})=(8\cdot 2)^{\frac{1}{2}}=16^{\frac{1}{2}}</math>
+
|<math>A=3000(1+\frac{0.04}{4})^{(4)10}</math>
 
|}
 
|}
  
'''a)''' Quarterly
+
'''a)''' Annually
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|<math>(8^{\frac{1}{2}})(2^{\frac{1}{2}})=(8\cdot 2)^{\frac{1}{2}}=16^{\frac{1}{2}}</math>
+
|<math>A=3000(1+\frac{0.04}{1})^{(1)10}</math>
 
|}
 
|}
  
Line 30: Line 30:
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|<math>(8^{\frac{1}{2}})(2^{\frac{1}{2}})=(8\cdot 2)^{\frac{1}{2}}=16^{\frac{1}{2}}</math>
+
|<math>A=3000(1+\frac{0.04}{12})^{(12)10}</math>
 
|}
 
|}
  
Line 37: Line 37:
 
!Solution: &nbsp;
 
!Solution: &nbsp;
 
|-
 
|-
|<math>(8^{\frac{1}{2}})(2^{\frac{1}{2}})=(8\cdot 2)^{\frac{1}{2}}=16^{\frac{1}{2}}</math>
+
|<math>A=3000(1+\frac{0.04}{365})^{(365)10}</math>
 
|}
 
|}
  

Revision as of 07:06, 11 August 2020

Limit Definition of

 The irrational number  is defined to be the limit:
 
 

Compound Interest

 Let  be the amount deposited,  the number of years,  the balance, 
 and  the annual interest rate (in decimal form).
 1. Compounded  times per year: 
 2. Compounded continuously: 

Exercises Find the balance in an account when $3000 is deposited for 10 years at an interest rate of 4%, compounded as follows.

a) Quarterly

Solution:  

a) Annually

Solution:  

a) Monthly

Solution:  

a) Daily

Solution:  

a) Continuously

Solution:  


Return to Topics Page

This page were made by Tri Phan