Difference between revisions of "Math 22 Exponential Functions"

From Math Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
7.<math>a^{-x}=\frac{1}{a^x}</math>
 
7.<math>a^{-x}=\frac{1}{a^x}</math>
  
 +
'''Exercises''' Use the properties of exponents to simplify each expression:
  
 +
'''a)''' <math>(8^{\frac{1}{2}})(2^{\frac{1}{2}})</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>(8^{\frac{1}{2}})(2^{\frac{1}{2}})=(8\cdot 2)^{\frac{1}{2}}=16^{\frac{1}{2}}</math>
 +
|}
 +
 +
'''b)''' <math>\frac{7^5}{49^3}</math>
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|<math>\frac{7^5}{49^3}=\frac{7^5}{(7^2)^3}=\frac{7^5}{7^{2.3}}=\frac{7^5}{7^6}=7^{5-6}=7^{-1}=\frac{1}{7}</math>
 +
|}
  
 
[[Math_22| '''Return to Topics Page''']]
 
[[Math_22| '''Return to Topics Page''']]
  
 
'''This page were made by [[Contributors|Tri Phan]]'''
 
'''This page were made by [[Contributors|Tri Phan]]'''

Revision as of 06:36, 11 August 2020

Definition of Exponential Function

 If  and , then the exponential function with base  is 

Properties of Exponents

Let and be positive real numbers, and let and be real numbers.

1.

2.

3.

4.

5.

6.

7.

Exercises Use the properties of exponents to simplify each expression:

a)

Solution:  

b)

Solution:  

Return to Topics Page

This page were made by Tri Phan