Difference between revisions of "Math 22 Optimization Problems"

From Math Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
==Solving Optimization Problems==
 
==Solving Optimization Problems==
'''Find Maximum Area''': Find the length and width of a rectangle that has 80 meters perimeter and a maximum area.
+
'''1) Maximum Area''': Find the length and width of a rectangle that has 80 meters perimeter and a maximum area.
  
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
Line 18: Line 18:
 
|}
 
|}
  
 +
'''2) Maximum Volume''' A rectangular solid with a square base has a surface area of <math>337.5</math> square centimeters. Find the dimensions that yield the maximum volume.
  
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Let <math>a</math> be the length of the one side of the square base in centimeter.
 +
|-
 +
|and <math>h</math> be the height of the solid in centimeter.
 +
|-
 +
|Then, the surface area <math>S=2a^2+4ah=337.5</math>, so <math>h=\frac{337.5-2a^2}{4a}</math>
 +
|-
 +
|Volume <math>V=a^2h=a^2(\frac{337.5-2a^2}{4a})=\frac{1}{4}a(337.5-a^2)=\frac{337.5a}{4}-\frac{a^3}{4}</math>
 +
|-
 +
|<math>V'=\frac{337.5}{4}-\frac{3}{4}a^2=0</math>, then <math>a^2=\frac{225}{4}</math>, so <math>a=\pm\frac{25}{2}=\frac{25}{2}</math> since <math>a</math> is positive.
 +
|-
 +
|Hence, <math>h=\frac{337.5-2a^2}{4a}=h=\frac{337.5-2(\frac{25}{2})^2}{4\frac{25}{2}}=\frac{1}{2}</math>
 +
|-
 +
|Therefore, the dimensions that yield the maximum value is <math>a=\frac{25}{2}</math> and <math>h=\frac{1}{2}</math>
 +
|}
  
  

Revision as of 08:14, 1 August 2020

Solving Optimization Problems

1) Maximum Area: Find the length and width of a rectangle that has 80 meters perimeter and a maximum area.

Solution:  
Let be the length of the rectangle in meter.
and be the width of the rectangle in meter.
Then, the perimeter , so , then
Area
, then , so
Therefore,

2) Maximum Volume A rectangular solid with a square base has a surface area of square centimeters. Find the dimensions that yield the maximum volume.

Solution:  
Let be the length of the one side of the square base in centimeter.
and be the height of the solid in centimeter.
Then, the surface area , so
Volume
, then , so since is positive.
Hence,
Therefore, the dimensions that yield the maximum value is and


Return to Topics Page

This page were made by Tri Phan