Difference between revisions of "Math 22 Concavity and the Second-Derivative Test"
Jump to navigation
Jump to search
Line 8: | Line 8: | ||
1. If <math>f''(x)>0</math> for all <math>x</math> in <math>I</math>, then the graph of <math>f</math> is concave upward on <math>I</math>. | 1. If <math>f''(x)>0</math> for all <math>x</math> in <math>I</math>, then the graph of <math>f</math> is concave upward on <math>I</math>. | ||
2. If <math>f''(x)<0</math> for all <math>x</math> in <math>I</math>, then the graph of <math>f</math> is concave downward on <math>I</math>. | 2. If <math>f''(x)<0</math> for all <math>x</math> in <math>I</math>, then the graph of <math>f</math> is concave downward on <math>I</math>. | ||
+ | |||
+ | ==Guidelines for Applying the Concavity Test== | ||
+ | 1. Locate the <math>x</math>-values at which <math>f''(x)=0</math> or <math>f''(x)</math> is undefined. | ||
+ | 2. Use these <math>x</math>-values to determine the test intervals. | ||
+ | 3. Determine the sign of <math>f'(x)</math> at an arbitrary number in each test intervals | ||
+ | 4. Apply the concavity test | ||
+ | |||
+ | |||
+ | '''Exercises:''' Find the second derivative of <math>f</math> and discuss the concavity of its graph. | ||
+ | |||
+ | '''1)''' <math>f(x)=x^3+2x^2</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |'''Step 1''': <math>f'(x)=3x^2+4x</math>, so <math>f''(x)=6x=0</math> | ||
+ | |- | ||
+ | |'''Step 2''': So <math>x=0</math>, so the test intervals are <math>(-\infty,0)</math> and <math>(0,\infty)</math> | ||
+ | |- | ||
+ | |'''Step 3''': Choose <math>x=-1</math> for the interval <math>(-\infty,0)</math>, and <math>x=1</math> for the interval <math>(0,\infty)</math>. | ||
+ | |- | ||
+ | |Then we have: <math>f''(-1)=-6<0</math> and <math>f''(1)=6>0</math> | ||
+ | |- | ||
+ | |'''Step 4''': By the concavity test, <math>f(x)</math> is concave up in <math>(0,\infty)</math> and <math>f(x)</math> is concave down in <math>(-\infty,0)</math> | ||
+ | |} | ||
+ | |||
+ | '''2)''' <math>f(x)=x^4-2x^3+10</math> | ||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |'''Step 1''': <math>f'(x)=4x^3-6x^2</math>, so <math>f''(x)=12x^2-12x=12x(x-1)=0</math> | ||
+ | |- | ||
+ | |'''Step 2''': So, <math>x=0</math> and <math>x=1</math>, so the test intervals are <math>(-\infty,0),(0,1)</math> and <math>(1,\infty)</math> | ||
+ | |- | ||
+ | |'''Step 3''': Choose <math>x=-1</math> for the interval <math>(-\infty,0)</math>, <math>x=\frac{1}{2}</math> for the interval <math>(0,1)</math> and <math>x=2</math> for the interval <math>(1,\infty)</math>. | ||
+ | |- | ||
+ | |Then we have: <math>f''(-1)=24>0</math>, <math>f''(\frac{1}{2})=-3<0</math> and <math>f''(2)=24>0</math> | ||
+ | |- | ||
+ | |'''Step 4''': By the concavity test, <math>f(x)</math> is concave up in <math>(0,\infty)\cup (1,\infty)</math> and <math>f(x)</math> is concave down in <math>(0,1)</math> | ||
+ | |} | ||
[[Math_22| '''Return to Topics Page''']] | [[Math_22| '''Return to Topics Page''']] | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Revision as of 07:04, 31 July 2020
Formal Definition of Concavity
Let be differentiable on an open interval . The graph of is 1. Concave upward on when is increasing on the interval. 2. Concave downward on when is decreasing on the interval.
Test for Concavity
Let be a function whose second derivative exists on an open interval 1. If for all in , then the graph of is concave upward on . 2. If for all in , then the graph of is concave downward on .
Guidelines for Applying the Concavity Test
1. Locate the -values at which or is undefined. 2. Use these -values to determine the test intervals. 3. Determine the sign of at an arbitrary number in each test intervals 4. Apply the concavity test
Exercises: Find the second derivative of and discuss the concavity of its graph.
1)
Solution: |
---|
Step 1: , so |
Step 2: So , so the test intervals are and |
Step 3: Choose for the interval , and for the interval . |
Then we have: and |
Step 4: By the concavity test, is concave up in and is concave down in |
2)
Solution: |
---|
Step 1: , so |
Step 2: So, and , so the test intervals are and |
Step 3: Choose for the interval , for the interval and for the interval . |
Then we have: , and |
Step 4: By the concavity test, is concave up in and is concave down in |
This page were made by Tri Phan