Difference between revisions of "Math 22 Limits"
Jump to navigation
Jump to search
Line 24: | Line 24: | ||
==Techniques for Evaluating Limits== | ==Techniques for Evaluating Limits== | ||
− | + | '''1. Direct Substitution''' | |
'''This page is under constuction''' | '''This page is under constuction''' | ||
'''This page were made by [[Contributors|Tri Phan]]''' | '''This page were made by [[Contributors|Tri Phan]]''' |
Revision as of 05:52, 14 July 2020
The Limit of a Function
Definition of the Limit of a Function If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} becomes arbitrarily close to a single number as approaches from either side, then which is read as "the limit of as approaches is
Note: Many times the limit of as approaches is simply , so limit can be evaluate by direct substitution as
Properties of Limits
Let and be real numbers, let be a positive integer, and let and be functions with the following limits and . Then
1. Scalar multiple:
2. Sum or difference:
3. Product:
4. Quotient:
5. Power:
6. Radical:
Techniques for Evaluating Limits
1. Direct Substitution
This page is under constuction
This page were made by Tri Phan