Difference between revisions of "Lines in the Plane and Slope"

From Math Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
For instance, suppose you want to find the slope of the line passing through the points <math> (x_1,x_2) </math> and <math> (y_1,y_2) </math>.
 
For instance, suppose you want to find the slope of the line passing through the points <math> (x_1,x_2) </math> and <math> (y_1,y_2) </math>.
  
<math>Slope =\frac {y_2-y_1}{x_2-x_1} =\frac {y_1-y_2}{x_1-x^2}</math>
+
<math>Slope =\frac {y_2-y_1}{x_2-x_1} =\frac {y_1-y_2}{x_1-x_2}</math>
  
  

Revision as of 06:56, 12 July 2020

Introduction

The simplest mathematical model for relating two variables is the linear equation . This equation is called Linear because its graph is a line. is the slope and is the y-intercept.

Finding the slope

For instance, suppose you want to find the slope of the line passing through the points and .

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Slope =\frac {y_2-y_1}{x_2-x_1} =\frac {y_1-y_2}{x_1-x_2}}


Notes:

A vertical line has equation of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=a } where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a } is any constant.