Difference between revisions of "009A Sample Final 3, Problem 4"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Discuss, without graphing, if the following function is continuous at  <math style="vertical-align: 0px">x=0.</math> ::<math>f(x) = \left\{ \beg...")
 
 
Line 61: Line 61:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=-1,</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\lim_{x\rightarrow 0^+}f(x)=\lim_{x\rightarrow 0^-}f(x)=-1,</math>
 
|-
 
|-
 
|we have  
 
|we have  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 3} f(x)=-1.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow 0} f(x)=-1.</math>
 
|-
 
|-
 
|But,
 
|But,
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f(0)=0\ne \lim_{x\rightarrow 3} f(x).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f(0)=0\ne \lim_{x\rightarrow 0} f(x).</math>
 
|-
 
|-
 
|Thus, <math style="vertical-align: -5px">f(x)</math>&nbsp; is not continuous.
 
|Thus, <math style="vertical-align: -5px">f(x)</math>&nbsp; is not continuous.

Latest revision as of 07:57, 4 December 2017

Discuss, without graphing, if the following function is continuous at  

If you think    is not continuous at    what kind of discontinuity is it?

Foundations:  
  is continuous at    if
       


Solution:

Step 1:  
We first calculate    We have

       

Step 2:  
Now, we calculate    We have

       

Step 3:  
Since

       

we have
       
But,
       
Thus,   is not continuous.
It is a jump discontinuity.


Final Answer:  
         is not continuous. It is a jump discontinuity.

Return to Sample Exam