Difference between revisions of "009A Sample Midterm 1, Problem 2"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the following function  <math style="vertical-align: -5px"> f:</math> ::<math>f(x) = \left\{ \begin{array}{lr} x^2 & \text{if }x...")
 
Line 1: Line 1:
<span class="exam">Consider the following function &nbsp;<math style="vertical-align: -5px"> f:</math>
+
<span class="exam">Suppose the size of a population at time &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; is given by
::<math>f(x) = \left\{
 
    \begin{array}{lr}
 
      x^2 & \text{if }x < 1\\
 
      \sqrt{x} & \text{if }x \geq 1
 
    \end{array}
 
  \right.
 
</math>
 
  
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^-} f(x).</math>
+
::<math>N(t)=\frac{1000t}{5+t},~t\ge 0.</math>
 
 
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^+} f(x).</math>
 
 
 
<span class="exam">(c) Find &nbsp;<math style="vertical-align: -13px"> \lim_{x\rightarrow 1} f(x).</math>
 
 
 
<span class="exam">(d) Is &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; continuous at &nbsp;<math style="vertical-align: -1px">x=1?</math>&nbsp; Briefly explain.
 
  
  

Revision as of 07:27, 7 November 2017

Suppose the size of a population at time    is given by


Foundations:  
1. If  
        then  
2.    is continuous at    if
       


Solution:

(a)

Step 1:  
Notice that we are calculating a left hand limit.
Thus, we are looking at values of    that are smaller than  
Using the definition of    we have
       
Step 2:  
Now, we have

       

(b)

Step 1:  
Notice that we are calculating a right hand limit.
Thus, we are looking at values of    that are bigger than  
Using the definition of    we have
       
Step 2:  
Now, we have

       

(c)

Step 1:  
From (a) and (b), we have
       
and
       
Step 2:  
Since
       
we have
       

(d)

Step 1:  
From (c), we have
       
Also,
       
Step 2:  
Since
       
 is continuous at  


Final Answer:  
    (a)    
    (b)    
    (c)    
    (d)       is continuous at    since  

Return to Sample Exam