Difference between revisions of "009A Sample Final A, Problem 8"
Jump to navigation
Jump to search
m |
|||
| Line 10: | Line 10: | ||
|Recall that the linear approximation ''L''(''x'') is the equation of the tangent line to a function at a given point. If we are given the point ''x''<span style="font-size:85%"><sub>0</sub></span>, then we will have the approximation <math style="vertical-align: -20%;">L(x) = f'(x_0)\cdot (x-x_0)+f(x_0)</math>. Note that such an approximation is usually only good "fairly close" to your original point ''x''<span style="font-size:85%"><sub>0</sub></span>. | |Recall that the linear approximation ''L''(''x'') is the equation of the tangent line to a function at a given point. If we are given the point ''x''<span style="font-size:85%"><sub>0</sub></span>, then we will have the approximation <math style="vertical-align: -20%;">L(x) = f'(x_0)\cdot (x-x_0)+f(x_0)</math>. Note that such an approximation is usually only good "fairly close" to your original point ''x''<span style="font-size:85%"><sub>0</sub></span>. | ||
|} | |} | ||
| − | '''Solution:''' | + | '''Solution:''' |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 08:53, 26 March 2015
8. (a) Find the linear approximation to the function at the point .
(b) Use to estimate the value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec\,(3\pi/7)}
.
| Foundations: |
|---|
| Recall that the linear approximation L(x) is the equation of the tangent line to a function at a given point. If we are given the point x0, then we will have the approximation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(x) = f'(x_0)\cdot (x-x_0)+f(x_0)} . Note that such an approximation is usually only good "fairly close" to your original point x0. |
Solution:
| Part (a): |
|---|
| Note that f '(x) = sec x tan x. Since sin(π/3) = √3/2 and cos(π/3) = 1/2, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(\pi /3) = 2\cdot\frac{\sqrt{3}/2}{\,\,1/2} = 2\sqrt{3}. } |
| Similarly, f(π/3) = sec(π/3) = 2. Together, this means that |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L(x) = f'(x_0)\cdot (x-x_0)+f(x_0) } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 2\sqrt{3}(x-\pi/3)+2.} |
| Part (b): |
|---|
| This is simply an exercise in plugging in values. We have |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L\left(\frac{3\pi}{7}\right)=2\sqrt{3}\left(\frac{3\pi}{7}-\frac{\pi}{3}\right)+2} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =2\sqrt{3}\left(\frac{9\pi-7\pi}{21}\right)+2} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 2\sqrt{3}\left(\frac{2\pi}{21}\right)+2} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{4\sqrt{3}\pi}{21}+2.} |