Difference between revisions of "009B Sample Final 3, Problem 3"

From Math Wiki
Jump to navigation Jump to search
 
Line 63: Line 63:
 
|The graph of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is displayed below.
 
|The graph of &nbsp;<math style="vertical-align: -5px">\rho(x)</math>&nbsp; is displayed below.
 
|-
 
|-
|[[File:009B_SF3_3.png|center|700px]]           
+
|[[File:009B_SF3_3.jpg|center|700px]]           
 
|}
 
|}
  

Latest revision as of 09:54, 25 May 2017

The population density of trout in a stream is

where    is measured in trout per mile and    is measured in miles.    runs from 0 to 12.

(a) Graph  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)}   and find the minimum and maximum.

(b) Find the total number of trout in the stream.

Foundations:  
What is the relationship between population density  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)}   and the total populations?
       The total population is equal to  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{a}^{b}\rho (x)~dx}
       for appropriate choices of  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle a,b.}


Solution:

(a)

Step 1:  
To graph    we need to find out when  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -x^{2}+6x+16}   is negative.
To do this, we set
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -x^{2}+6x+16=0.}
So, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {0}&=&\displaystyle {-x^{2}+6x+16}\\&&\\&=&\displaystyle {-(x^{2}-6x-16)}\\&&\\&=&\displaystyle {-(x+2)(x-8).}\end{array}}}
Hence, we get    and   
But,    is outside of the domain of  
Using test points, we can see that  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -x^{2}+6x+16}   is positive in the interval  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle [0,8]}
and negative in the interval  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle [8,12].}
Hence, we have
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)=\left\{{\begin{array}{ll}-x^{2}+6x+16&{\text{if }}0\leq x\leq 8\\\,\,\,\,x^{2}-6x-16\qquad &{\text{if }}8<x\leq 12\end{array}}\right.}
The graph of  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)}   is displayed below.
009B SF3 3.jpg
Step 2:  
We need to find the absolute maximum and minimum of  
We begin by finding the critical points of
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -x^{2}+6x+16.}
Taking the derivative, we get
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -2x+6.}
Solving  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -2x+6=0,}   we get a critical point at
       
Now, we calculate  
We have
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (0)=16,~\rho (3)=25,~\rho (12)=56.}
Therefore, the minimum of  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)}   is  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 16}   and the maximum of  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)}   is  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 56.}

(b)

Step 1:  
To calculate the total number of trout, we need to find
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{12}\rho (x)~dx.}
Using the information from Step 1 of (a), we have
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{12}\rho (x)~dx=\int _{0}^{8}(-x^{2}+6x+16)~dx+\int _{8}^{12}(x^{2}-6x-16)~dx.}
Step 2:  
We integrate to get
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int _{0}^{12}\rho (x)~dx}&=&\displaystyle {{\bigg (}{\frac {-x^{3}}{3}}+3x^{2}+16x{\bigg )}{\bigg |}_{0}^{8}+{\bigg (}{\frac {x^{3}}{3}}-3x^{2}-16x{\bigg )}{\bigg |}_{8}^{12}}\\&&\\&=&\displaystyle {{\bigg (}{\frac {-8^{3}}{3}}+3(8)^{2}+16(8){\bigg )}-0+{\bigg (}{\frac {(12)^{3}}{3}}-3(12)^{2}-16(12){\bigg )}-{\bigg (}{\frac {8^{3}}{3}}-3(8)^{2}-16(8){\bigg )}}\\&&\\&=&\displaystyle {8{\bigg (}{\frac {56}{3}}{\bigg )}+12{\bigg (}{\frac {12}{3}}{\bigg )}+8{\bigg (}{\frac {56}{3}}{\bigg )}}\\&&\\&=&\displaystyle {{\frac {752}{3}}.}\end{array}}}
Thus, there are approximately    trout.


Final Answer:  
    (a)     The minimum of  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)}   is  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 16}   and the maximum of  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)}   is  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 56.} (See above for graph.)
    (b)     There are approximately    trout.

Return to Sample Exam