Difference between revisions of "009B Sample Final 3, Problem 3"
Jump to navigation
Jump to search
| Line 63: | Line 63: | ||
|The graph of <math style="vertical-align: -5px">\rho(x)</math> is displayed below. | |The graph of <math style="vertical-align: -5px">\rho(x)</math> is displayed below. | ||
|- | |- | ||
| − | |[[File:009B_SF3_3. | + | |[[File:009B_SF3_3.jpg|center|700px]] |
|} | |} | ||
Latest revision as of 09:54, 25 May 2017
The population density of trout in a stream is
where is measured in trout per mile and is measured in miles. runs from 0 to 12.
(a) Graph Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)} and find the minimum and maximum.
(b) Find the total number of trout in the stream.
| Foundations: |
|---|
| What is the relationship between population density Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)} and the total populations? |
| The total population is equal to Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{a}^{b}\rho (x)~dx} |
| for appropriate choices of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle a,b.} |
Solution:
(a)
| Step 1: |
|---|
| To graph we need to find out when Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -x^{2}+6x+16} is negative. |
| To do this, we set |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -x^{2}+6x+16=0.} |
| So, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {0}&=&\displaystyle {-x^{2}+6x+16}\\&&\\&=&\displaystyle {-(x^{2}-6x-16)}\\&&\\&=&\displaystyle {-(x+2)(x-8).}\end{array}}} |
| Hence, we get and |
| But, is outside of the domain of |
| Using test points, we can see that Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -x^{2}+6x+16} is positive in the interval Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle [0,8]} |
| and negative in the interval Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle [8,12].} |
| Hence, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)=\left\{{\begin{array}{ll}-x^{2}+6x+16&{\text{if }}0\leq x\leq 8\\\,\,\,\,x^{2}-6x-16\qquad &{\text{if }}8<x\leq 12\end{array}}\right.} |
| The graph of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)} is displayed below. |
| Step 2: |
|---|
| We need to find the absolute maximum and minimum of |
| We begin by finding the critical points of |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -x^{2}+6x+16.} |
| Taking the derivative, we get |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -2x+6.} |
| Solving Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle -2x+6=0,} we get a critical point at |
| Now, we calculate |
| We have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (0)=16,~\rho (3)=25,~\rho (12)=56.} |
| Therefore, the minimum of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)} is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 16} and the maximum of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)} is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 56.} |
(b)
| Step 1: |
|---|
| To calculate the total number of trout, we need to find |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{12}\rho (x)~dx.} |
| Using the information from Step 1 of (a), we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{12}\rho (x)~dx=\int _{0}^{8}(-x^{2}+6x+16)~dx+\int _{8}^{12}(x^{2}-6x-16)~dx.} |
| Step 2: |
|---|
| We integrate to get |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {\int _{0}^{12}\rho (x)~dx}&=&\displaystyle {{\bigg (}{\frac {-x^{3}}{3}}+3x^{2}+16x{\bigg )}{\bigg |}_{0}^{8}+{\bigg (}{\frac {x^{3}}{3}}-3x^{2}-16x{\bigg )}{\bigg |}_{8}^{12}}\\&&\\&=&\displaystyle {{\bigg (}{\frac {-8^{3}}{3}}+3(8)^{2}+16(8){\bigg )}-0+{\bigg (}{\frac {(12)^{3}}{3}}-3(12)^{2}-16(12){\bigg )}-{\bigg (}{\frac {8^{3}}{3}}-3(8)^{2}-16(8){\bigg )}}\\&&\\&=&\displaystyle {8{\bigg (}{\frac {56}{3}}{\bigg )}+12{\bigg (}{\frac {12}{3}}{\bigg )}+8{\bigg (}{\frac {56}{3}}{\bigg )}}\\&&\\&=&\displaystyle {{\frac {752}{3}}.}\end{array}}} |
| Thus, there are approximately trout. |
| Final Answer: |
|---|
| (a) The minimum of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)} is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 16} and the maximum of Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \rho (x)} is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 56.} (See above for graph.) |
| (b) There are approximately trout. |