Difference between revisions of "009A Sample Final 2, Problem 10"
(Created page with "<span class="exam">Let ::<math>f(x)=\frac{4x}{x^2+1}</math> <span class="exam">(a) Find all local maximum and local minimum values of <math style="vertical-align: -4px"...") |
|||
| Line 152: | Line 152: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |By L'Hopital's Rule, we have |
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\lim_{x\rightarrow \infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{4x}{x^2+1}}\\ | ||
| + | &&\\ | ||
| + | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{4}{2x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Similarly, we have | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{x\rightarrow -\infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4x}{x^2+1}}\\ | ||
| + | &&\\ | ||
| + | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4}{2x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 160: | Line 176: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |Since | + | |Since |
| + | |- | ||
| + | | <math>\displaystyle{\lim_{x\rightarrow -\infty } f(x)=\lim_{x\rightarrow \infty } f(x)=0,}</math> | ||
|- | |- | ||
|<math style="vertical-align: -5px">f(x)</math> has a horizontal asymptote | |<math style="vertical-align: -5px">f(x)</math> has a horizontal asymptote | ||
Revision as of 17:13, 20 May 2017
Let
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x)={\frac {4x}{x^{2}+1}}}
(a) Find all local maximum and local minimum values of find all intervals where is increasing and all intervals where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is decreasing.
(b) Find all inflection points of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,} find all intervals where the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is concave upward and all intervals where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is concave downward.
(c) Find all horizontal asymptotes of the graph Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}
(d) Sketch the graph of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}
| Foundations: |
|---|
| 1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is increasing when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)>0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is decreasing when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)<0.} |
| 2. The First Derivative Test tells us when we have a local maximum or local minimum. |
| 3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is concave up when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)>0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is concave down when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)<0.} |
| 4. Inflection points occur when Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=0.} |
Solution:
(a)
| Step 1: |
|---|
| We start by taking the derivative of |
| Using the Quotient Rule, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f'(x)}&=&\displaystyle {\frac {(x^{2}+1)(4x)'-(4x)(x^{2}+1)'}{(x^{2}+1)^{2}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)(4)-(4x)(2x)}{(x^{2}+1)^{2}}}\\&&\\&=&\displaystyle {{\frac {-4(x^{2}-1)}{(x^{2}+1)^{2}}}.}\end{array}}} |
| Now, we set |
| So, we have |
| Hence, we have and |
| So, these values of break up the number line into 3 intervals: |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-1),(-1,1),(1,\infty ).} |
| Step 2: |
|---|
| To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
| For Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=-2,~f'(x)={\frac {-12}{25}}<0.} |
| For Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=0,~f'(x)=4>0.} |
| For Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=2,~f'(x)={\frac {-12}{25}}<0.} |
| Thus, is increasing on Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-1,1)} and decreasing on Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-1)\cup (1,\infty ).} |
| Step 3: |
|---|
| Using the First Derivative Test, has a local minimum at and a local maximum at |
| Thus, the local maximum and local minimum values of are |
(b)
| Step 1: |
|---|
| To find the intervals when the function is concave up or concave down, we need to find |
| Using the Quotient Rule and Chain Rule, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f''(x)}&=&\displaystyle {\frac {(x^{2}+1)^{2}(-4(x^{2}-1))'+4(x^{2}-1)((x^{2}+1)^{2})'}{((x^{2}+1)^{2})^{2}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)^{2}(-8x)+4(x^{2}-1)2(x^{2}+1)(x^{2}+1)'}{(x^{2}+1)^{4}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)^{2}(-8x)+4(x^{2}-1)2(x^{2}+1)(2x)}{(x^{2}+1)^{4}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)(-8x)+16(x^{2}-1)x}{(x^{2}+1)^{3}}}\\&&\\&=&\displaystyle {\frac {8x^{3}-24x}{(x^{2}+1)^{3}}}\\&&\\&=&\displaystyle {{\frac {8x(x^{2}-3)}{(x^{2}+1)^{3}}}.}\end{array}}} |
| We set |
| So, we have |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 8x(x^{2}-3)=0.} |
| Hence, |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=0,~x=-{\sqrt {3}},~x={\sqrt {3}}.} |
| This value breaks up the number line into four intervals: |
| Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-{\sqrt {3}}),(-{\sqrt {3}},0),(0,{\sqrt {3}}),({\sqrt {3}},\infty ).} |
| Step 2: |
|---|
| Again, we use test points in these four intervals. |
| For we have Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)={\frac {-16}{125}}<0.} |
| For we have Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)=2>0.} |
| For we have Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)=-2<0.} |
| For we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=\frac{16}{125}>0.} |
| Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is concave up on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\sqrt{3},0)\cup(\sqrt{3},\infty),} and concave down on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-\sqrt{3})\cup(0,\sqrt{3}).} |
| Step 3: |
|---|
| The inflection points occur at |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,~x=-\sqrt{3},~x=\sqrt{3}.} |
| Plugging these into Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x),} we get the inflection points |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0),(-\sqrt{3},-\sqrt{3}),(\sqrt{3},\sqrt{3}).} |
(c)
| Step 1: |
|---|
| By L'Hopital's Rule, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow \infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{4x}{x^2+1}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{4}{2x}}\\ &&\\ & = & \displaystyle{0.} \end{array}} |
| Similarly, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4x}{x^2+1}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4}{2x}}\\ &&\\ & = & \displaystyle{0.} \end{array}} |
| Step 2: |
|---|
| Since |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\lim_{x\rightarrow -\infty } f(x)=\lim_{x\rightarrow \infty } f(x)=0,}} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} has a horizontal asymptote |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.} |
| (d): |
|---|
| Insert sketch |
| Final Answer: |
|---|
| (a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is increasing on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1,1)} and decreasing on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-1)\cup (1,\infty).} |
| The local maximum value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} and the local minimum value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2} |
| (b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} is concave up on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\sqrt{3},0)\cup(\sqrt{3},\infty),} and concave down on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-\sqrt{3})\cup(0,\sqrt{3}).} |
| The inflection points are Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0),(-\sqrt{3},-\sqrt{3}),(\sqrt{3},\sqrt{3}).} |
| (c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0} |
| (d) See above |