Difference between revisions of "009A Sample Final 2, Problem 10"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Let ::<math>f(x)=\frac{4x}{x^2+1}</math> <span class="exam">(a) Find all local maximum and local minimum values of  <math style="vertical-align: -4px"...")
 
Line 152: Line 152:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we note that the degree of the numerator is &nbsp;<math style="vertical-align: -1px">1</math>&nbsp; and
+
|By L'Hopital's Rule, we have
 
|-
 
|-
|the degree of the denominator is &nbsp;<math style="vertical-align: 0px">2.</math>&nbsp;
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow \infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{4x}{x^2+1}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{4}{2x}}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 +
|-
 +
|Similarly, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow -\infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4x}{x^2+1}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4}{2x}}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 160: Line 176:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Since the degree of the denominator is greater than the degree of the numerator,  
+
|Since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\displaystyle{\lim_{x\rightarrow -\infty } f(x)=\lim_{x\rightarrow \infty } f(x)=0,}</math>
 
|-
 
|-
 
|<math style="vertical-align: -5px">f(x)</math>&nbsp; has a horizontal asymptote  
 
|<math style="vertical-align: -5px">f(x)</math>&nbsp; has a horizontal asymptote  

Revision as of 17:13, 20 May 2017

Let

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f(x)={\frac {4x}{x^{2}+1}}}

(a) Find all local maximum and local minimum values of    find all intervals where    is increasing and all intervals where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is decreasing.

(b) Find all inflection points of the function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,}   find all intervals where the function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is concave upward and all intervals where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is concave downward.

(c) Find all horizontal asymptotes of the graph  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}

(d) Sketch the graph of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x).}

Foundations:  
1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is increasing when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)>0}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is decreasing when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)<0.}
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave up when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)>0}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave down when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)<0.}
4. Inflection points occur when  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=0.}


Solution:

(a)

Step 1:  
We start by taking the derivative of   
Using the Quotient Rule, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f'(x)}&=&\displaystyle {\frac {(x^{2}+1)(4x)'-(4x)(x^{2}+1)'}{(x^{2}+1)^{2}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)(4)-(4x)(2x)}{(x^{2}+1)^{2}}}\\&&\\&=&\displaystyle {{\frac {-4(x^{2}-1)}{(x^{2}+1)^{2}}}.}\end{array}}}
Now, we set   
So, we have
       
Hence, we have    and  
So, these values of    break up the number line into 3 intervals:
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-1),(-1,1),(1,\infty ).}
Step 2:  
To check whether the function is increasing or decreasing in these intervals, we use testpoints.
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=-2,~f'(x)={\frac {-12}{25}}<0.}
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=0,~f'(x)=4>0.}
For  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=2,~f'(x)={\frac {-12}{25}}<0.}
Thus,    is increasing on  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-1,1)}   and decreasing on  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-1)\cup (1,\infty ).}
Step 3:  
Using the First Derivative Test,    has a local minimum at    and a local maximum at   
Thus, the local maximum and local minimum values of    are
       

(b)

Step 1:  
To find the intervals when the function is concave up or concave down, we need to find  
Using the Quotient Rule and Chain Rule, we have
        Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{array}{rcl}\displaystyle {f''(x)}&=&\displaystyle {\frac {(x^{2}+1)^{2}(-4(x^{2}-1))'+4(x^{2}-1)((x^{2}+1)^{2})'}{((x^{2}+1)^{2})^{2}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)^{2}(-8x)+4(x^{2}-1)2(x^{2}+1)(x^{2}+1)'}{(x^{2}+1)^{4}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)^{2}(-8x)+4(x^{2}-1)2(x^{2}+1)(2x)}{(x^{2}+1)^{4}}}\\&&\\&=&\displaystyle {\frac {(x^{2}+1)(-8x)+16(x^{2}-1)x}{(x^{2}+1)^{3}}}\\&&\\&=&\displaystyle {\frac {8x^{3}-24x}{(x^{2}+1)^{3}}}\\&&\\&=&\displaystyle {{\frac {8x(x^{2}-3)}{(x^{2}+1)^{3}}}.}\end{array}}}
We set  
So, we have
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 8x(x^{2}-3)=0.}  
Hence,
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle x=0,~x=-{\sqrt {3}},~x={\sqrt {3}}.}
This value breaks up the number line into four intervals:
       Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle (-\infty ,-{\sqrt {3}}),(-{\sqrt {3}},0),(0,{\sqrt {3}}),({\sqrt {3}},\infty ).}
Step 2:  
Again, we use test points in these four intervals.
For    we have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)={\frac {-16}{125}}<0.}
For    we have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)=2>0.}
For    we have  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle f''(x)=-2<0.}
For    we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f''(x)=\frac{16}{125}>0.}
Thus,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave up on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\sqrt{3},0)\cup(\sqrt{3},\infty),}   and concave down on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-\sqrt{3})\cup(0,\sqrt{3}).}
Step 3:  
The inflection points occur at
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0,~x=-\sqrt{3},~x=\sqrt{3}.}
Plugging these into  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x),} we get the inflection points
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0),(-\sqrt{3},-\sqrt{3}),(\sqrt{3},\sqrt{3}).}

(c)

Step 1:  
By L'Hopital's Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow \infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{4x}{x^2+1}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{4}{2x}}\\ &&\\ & = & \displaystyle{0.} \end{array}}
Similarly, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty } f(x)} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4x}{x^2+1}}\\ &&\\ & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow -\infty} \frac{4}{2x}}\\ &&\\ & = & \displaystyle{0.} \end{array}}
Step 2:  
Since
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle{\lim_{x\rightarrow -\infty } f(x)=\lim_{x\rightarrow \infty } f(x)=0,}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   has a horizontal asymptote
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0.}
(d):  
Insert sketch


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is increasing on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1,1)}   and decreasing on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-1)\cup (1,\infty).}
           The local maximum value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}   and the local minimum value of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2}  
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is concave up on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\sqrt{3},0)\cup(\sqrt{3},\infty),}   and concave down on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-\infty,-\sqrt{3})\cup(0,\sqrt{3}).}
            The inflection points are  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,0),(-\sqrt{3},-\sqrt{3}),(\sqrt{3},\sqrt{3}).}
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=0}
   (d)    See above

Return to Sample Exam