Difference between revisions of "009B Sample Final 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">(a) Find the area of the surface obtained by rotating the arc of the curve ::<math>y^3=x</math> <span class="exam">between  <math style="vertical-al...")
 
 
Line 101: Line 101:
 
|Then, we have
 
|Then, we have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\frac{729x}{4}}~dx.</math>
 
|-
 
|-
 
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -14px">u=1+\frac{27^2x}{2^2}.</math>
+
|Let &nbsp;<math style="vertical-align: -14px">u=1+\frac{729x}{4}.</math>
 
|-
 
|-
|Then, &nbsp;<math style="vertical-align: -14px">du=\frac{27^2}{2^2}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">dx=\frac{2^2}{27^2}du.</math>
+
|Then, &nbsp;<math style="vertical-align: -14px">du=\frac{729}{4}~dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">dx=\frac{4}{729}~du.</math>
 
|-
 
|-
 
|Also, since this is a definite integral, we need to change the bounds of integration.
 
|Also, since this is a definite integral, we need to change the bounds of integration.
Line 113: Line 113:
 
|We have  
 
|We have  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">u_1=1+\frac{729(1)}{4}=\frac{733}{4}</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">u_2=1+\frac{729(4)}{4}=730.</math>
 
|-
 
|-
 
|Hence, we now have
 
|Hence, we now have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{\frac{733}{4}}^{730} \frac{4}{729}u^{\frac{1}{2}}~du.</math>
 
|}
 
|}
  
Line 126: Line 126:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{L} & = & \displaystyle{\frac{2^2}{27^2} \bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\
+
\displaystyle{L} & = & \displaystyle{\frac{4}{729} \bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{\frac{733}{4}}^{730}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{2^3}{3^4} u^{\frac{3}{2}}\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\
+
& = & \displaystyle{\frac{8}{2187} u^{\frac{3}{2}}\bigg|_{\frac{733}{4}}^{730}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}.}
+
& = & \displaystyle{\frac{8}{2187} (730)^{\frac{3}{2}}-\frac{8}{2187} \bigg(\frac{733}{4}\bigg)^{\frac{3}{2}}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 140: Line 140:
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{\pi}{27} (10)^{\frac{3}{2}}-\frac{\pi}{27}</math>
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{\pi}{27} (10)^{\frac{3}{2}}-\frac{\pi}{27}</math>
 
|-
 
|-
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}</math>
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{8}{2187} (730)^{\frac{3}{2}}-\frac{8}{2187} \bigg(\frac{733}{4}\bigg)^{\frac{3}{2}}</math>
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:08, 20 May 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

between    and    about the  -axis.

(b) Find the length of the arc

between the points    and  

Foundations:  
1. The surface area    of a function    rotated about the  -axis is given by

         where  

2. The formula for the length    of a curve    where    is

       


Solution:

(a)

Step 1:  
We start by calculating  
Since  
       
Now, we are going to integrate with respect to  
Using the formula given in the Foundations section,
we have
       
where    is the surface area.
Step 2:  
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Thus, we get
       

(b)

Step 1:  
First, we calculate  
Since    we have
       
Then, the arc length    of the curve is given by
       
Step 2:  
Then, we have
       
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Hence, we now have
       
Step 3:  
Therefore, we have
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam