Difference between revisions of "009A Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 85: Line 85:
 
|First, we use the Quotient Rule to get
 
|First, we use the Quotient Rule to get
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^3)'-(5x^2+7x)^3(\ln(x^2+1))'}{(\ln(x^2+1))^2}.</math>
 
|}
 
|}
  
Line 94: Line 94:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\
+
\displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^3)'-(5x^2+7x)^3(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(5x^2+7x)'-(5x^2+7x)^2\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\
+
& = & \displaystyle{\frac{\ln(x^2+1)3(5x^2+7x)^2(5x^2+7x)'-(5x^2+7x)^3\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.}
+
& = & \displaystyle{\frac{\ln(x^2+1)3(5x^2+7x)^2(10x+7)-(5x^2+7x)^3\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 110: Line 110:
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>g'(x)=\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>g'(x)=\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math>
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>h'(x)=\frac{\ln(x^2+1)3(5x^2+7x)^2(10x+7)-(5x^2+7x)^3\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:41, 3 May 2017

Find the derivatives of the following functions. Do not simplify.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\tan^3(7x^2+5) }

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\sin(\cos(e^x)) }

(c)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} }


Foundations:  
1. Chain Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)}
2. Trig Derivatives
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\cos x)=-\sin x}
3. Quotient Rule
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}}
4. Derivative of natural logarithm
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(\ln x)=\frac{1}{x}}


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3\tan^2(7x^2+5)(\tan(7x^2+5))'.}
Step 2:  
Now, we use the Chain Rule again to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{3\tan^2(7x^2+5)(\tan(7x^2+5))'}\\ &&\\ & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(7x^2+5)'}\\ &&\\ & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x).} \end{array}}

(b)

Step 1:  
First, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\cos(\cos(e^x))(\cos(e^x))'.}
Step 2:  
Now, we use the Chain Rule again to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\cos(\cos(e^x))(\cos(e^x))'}\\ &&\\ & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x)'}\\ &&\\ & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x).} \end{array}}

(c)

Step 1:  
First, we use the Quotient Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^3)'-(5x^2+7x)^3(\ln(x^2+1))'}{(\ln(x^2+1))^2}.}
Step 2:  
Now, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^3)'-(5x^2+7x)^3(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\ &&\\ & = & \displaystyle{\frac{\ln(x^2+1)3(5x^2+7x)^2(5x^2+7x)'-(5x^2+7x)^3\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\ &&\\ & = & \displaystyle{\frac{\ln(x^2+1)3(5x^2+7x)^2(10x+7)-(5x^2+7x)^3\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.} \end{array}}


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\cos(\cos(e^x))(-\sin(e^x))(e^x)}
    (c)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h'(x)=\frac{\ln(x^2+1)3(5x^2+7x)^2(10x+7)-(5x^2+7x)^3\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}}

Return to Sample Exam