Difference between revisions of "009C Sample Midterm 2, Problem 5"

From Math Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|If a power series converges, then it has a nonempty interval of convergence.
+
|'''Ratio Test'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|}
 
|}
  
Line 24: Line 37:
 
|Let &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; be the radius of convergence of this power series.
 
|Let &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; be the radius of convergence of this power series.
 
|-
 
|-
|So, the power series
+
|We can use the Ratio Test to find &nbsp;<math style="vertical-align: 0px">R.</math>&nbsp;
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp;
+
|Using the Ratio Test, we have
 
|-
 
|-
|converges in the interval &nbsp;<math style="vertical-align: -5px">(-R,R).</math>&nbsp;
+
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
 +
\end{array}</math>
 +
|-
 +
|Since the radius of convergence of the series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">R,</math>&nbsp; we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}.</math>
 
|}
 
|}
  
Line 34: Line 56:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -5px">a\in (-2R,2R).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -13px">\frac{a}{2} \in (-R,R).</math>&nbsp;
+
|Now, we use the Ratio Test to find the radius of convergence of the series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n.</math>
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; converges in the interval &nbsp;<math style="vertical-align: -5px">(-R,R),</math>&nbsp;
+
|Using the Ratio Test, we have
 
|-
 
|-
|&nbsp; <math>\sum_{n=0}^\infty c_n\bigg(\frac{a}{2}\bigg)^n</math>&nbsp; converges.
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}2^nx^{n+1}}{c_n2^{n+1}x^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{2c_n}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\frac{|x|}{2}\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
 +
\end{array}</math>
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: 0px">a</math>&nbsp; was an arbitrary number in the interval &nbsp;<math style="vertical-align: -5px">(-2R,2R),</math>&nbsp;
+
|Hence, the radius of convergence of this power series is
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{2}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}=2R.</math>
 
|-
 
|-
|converges in the interval &nbsp;<math style="vertical-align: -5px">(-2R,2R).</math>&nbsp;
+
|Therefore, this power series converges.  
 
|}
 
|}
  
Line 55: Line 81:
 
|Let &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; be the radius of convergence of this power series.
 
|Let &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; be the radius of convergence of this power series.
 
|-
 
|-
|So, the power series
+
|We can use the Ratio Test to find &nbsp;<math style="vertical-align: 0px">R.</math>&nbsp;
 +
|-
 +
|Using the Ratio Test, we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}x^{n+1}}{c_nx^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}x}{c_n}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
 +
\end{array}</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp;  
+
|Since the radius of convergence of the series &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">R,</math>&nbsp; we have
 
|-
 
|-
|converges in the interval &nbsp;<math style="vertical-align: -5px">(-R,R).</math>&nbsp;
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>R=\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}.</math>
 
|}
 
|}
  
Line 65: Line 100:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -5px">a\in (-R,R).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">-a \in (-R,R).</math>&nbsp;
+
|Now, we use the Ratio Test to find the radius of convergence of the series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_n(-x)^n .</math>
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math>&nbsp; converges in the interval &nbsp;<math style="vertical-align: -5px">(-R,R),</math>&nbsp;
+
|Using the Ratio Test, we have
 
|-
 
|-
|&nbsp;<math>\sum_{n=0}^\infty c_n(-a)^n</math>&nbsp; converges.
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{c_{n+1}(-x)^{n+1}}{c_n(-x)^n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{c_{n+1}(-x)}{c_n}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{|x|\lim_{n\rightarrow \infty}\frac{c_{n+1}}{c_n}.}
 +
\end{array}</math>
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: 0px">a</math>&nbsp; was an arbitrary number in the interval &nbsp;<math style="vertical-align: -5px">(-R,R),</math>&nbsp;
+
|Hence, the radius of convergence of this power series is
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=0}^\infty c_n(-x)^n</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\displaystyle{\lim_{n\rightarrow \infty} \frac{c_{n+1}}{c_n}}}=R.</math>
 
|-
 
|-
|converges in the interval &nbsp;<math style="vertical-align: -5px">(-R,R).</math>&nbsp;
+
|Therefore, this power series converges.
 
|}
 
|}
  

Revision as of 11:55, 24 April 2017

If    converges, does it follow that the following series converges?

(a)  

(b)  


Foundations:  
Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.


Solution:

(a)

Step 1:  
Assume that the power series    converges.
Let    be the radius of convergence of this power series.
We can use the Ratio Test to find   
Using the Ratio Test, we have

       

Since the radius of convergence of the series    is    we have
       
Step 2:  
Now, we use the Ratio Test to find the radius of convergence of the series
Using the Ratio Test, we have
       
Hence, the radius of convergence of this power series is
       
Therefore, this power series converges.

(b)

Step 1:  
Assume that the power series    converges.
Let    be the radius of convergence of this power series.
We can use the Ratio Test to find   
Using the Ratio Test, we have

       

Since the radius of convergence of the series    is    we have
       
Step 2:  
Now, we use the Ratio Test to find the radius of convergence of the series
Using the Ratio Test, we have
       
Hence, the radius of convergence of this power series is
       
Therefore, this power series converges.


Final Answer:  
    (a)     converges
    (b)     converges

Return to Sample Exam