Difference between revisions of "009C Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Line 36: | Line 36: | ||
|Let <math style="vertical-align: -5px">a\in (-2R,2R).</math> Then, <math style="vertical-align: -13px">\frac{a}{2} \in (-R,R).</math> | |Let <math style="vertical-align: -5px">a\in (-2R,2R).</math> Then, <math style="vertical-align: -13px">\frac{a}{2} \in (-R,R).</math> | ||
|- | |- | ||
− | | | + | |Since <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> converges in the interval <math style="vertical-align: -5px">(-R,R),</math> |
|- | |- | ||
− | | | + | | <math>\sum_{n=0}^\infty c_n\bigg(\frac{a}{2}\bigg)^n</math> converges. |
|- | |- | ||
− | + | |Since <math style="vertical-align: 0px">a</math> was an arbitrary number in the interval <math style="vertical-align: -5px">(-2R,2R),</math> | |
− | |||
− | |Since <math style="vertical-align: 0px">a</math> was an arbitrary number in the interval <math style="vertical-align: -5px"> | ||
|- | |- | ||
| <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math> | | <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math> | ||
Line 53: | Line 51: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Assume that the power series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> converges. |
+ | |- | ||
+ | |Let <math style="vertical-align: 0px">R</math> be the radius of convergence of this power series. | ||
+ | |- | ||
+ | |So, the power series | ||
+ | |- | ||
+ | | <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> | ||
+ | |- | ||
+ | |converges in the interval <math style="vertical-align: -5px">(-R,R).</math> | ||
|} | |} | ||
Line 59: | Line 65: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Let <math style="vertical-align: -5px">a\in (-R,R).</math> Then, <math style="vertical-align: -5px">-a \in (-R,R).</math> |
+ | |- | ||
+ | |Since <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> converges in the interval <math style="vertical-align: -5px">(-R,R),</math> | ||
+ | |- | ||
+ | | <math>\sum_{n=0}^\infty c_n(-a)^n</math> converges. | ||
+ | |- | ||
+ | |Since <math style="vertical-align: 0px">a</math> was an arbitrary number in the interval <math style="vertical-align: -5px">(-R,R),</math> | ||
+ | |- | ||
+ | | <math>\sum_{n=0}^\infty c_n(-x)^n</math> | ||
+ | |- | ||
+ | |converges in the interval <math style="vertical-align: -5px">(-R,R).</math> | ||
|} | |} | ||
Revision as of 16:27, 23 April 2017
If converges, does it follow that the following series converges?
(a)
(b)
Foundations: |
---|
If a power series converges, then it has a nonempty interval of convergence. |
Solution:
(a)
Step 1: |
---|
Assume that the power series converges. |
Let be the radius of convergence of this power series. |
So, the power series |
converges in the interval |
Step 2: |
---|
Let Then, |
Since converges in the interval |
converges. |
Since was an arbitrary number in the interval |
converges in the interval |
(b)
Step 1: |
---|
Assume that the power series converges. |
Let be the radius of convergence of this power series. |
So, the power series |
converges in the interval |
Step 2: |
---|
Let Then, |
Since converges in the interval |
converges. |
Since was an arbitrary number in the interval |
converges in the interval |
Final Answer: |
---|
(a) converges |
(b) converges |