Difference between revisions of "009C Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
| Line 36: | Line 36: | ||
|Let <math style="vertical-align: -5px">a\in (-2R,2R).</math> Then, <math style="vertical-align: -13px">\frac{a}{2} \in (-R,R).</math> | |Let <math style="vertical-align: -5px">a\in (-2R,2R).</math> Then, <math style="vertical-align: -13px">\frac{a}{2} \in (-R,R).</math> | ||
|- | |- | ||
| − | | | + | |Since <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> converges in the interval <math style="vertical-align: -5px">(-R,R),</math> |
|- | |- | ||
| − | | | + | | <math>\sum_{n=0}^\infty c_n\bigg(\frac{a}{2}\bigg)^n</math> converges. |
|- | |- | ||
| − | + | |Since <math style="vertical-align: 0px">a</math> was an arbitrary number in the interval <math style="vertical-align: -5px">(-2R,2R),</math> | |
| − | |||
| − | |Since <math style="vertical-align: 0px">a</math> was an arbitrary number in the interval <math style="vertical-align: -5px"> | ||
|- | |- | ||
| <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math> | | <math>\sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n</math> | ||
| Line 53: | Line 51: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |Assume that the power series <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> converges. |
| + | |- | ||
| + | |Let <math style="vertical-align: 0px">R</math> be the radius of convergence of this power series. | ||
| + | |- | ||
| + | |So, the power series | ||
| + | |- | ||
| + | | <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> | ||
| + | |- | ||
| + | |converges in the interval <math style="vertical-align: -5px">(-R,R).</math> | ||
|} | |} | ||
| Line 59: | Line 65: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: -5px">a\in (-R,R).</math> Then, <math style="vertical-align: -5px">-a \in (-R,R).</math> |
| + | |- | ||
| + | |Since <math style="vertical-align: -19px">\sum_{n=0}^\infty c_nx^n</math> converges in the interval <math style="vertical-align: -5px">(-R,R),</math> | ||
| + | |- | ||
| + | | <math>\sum_{n=0}^\infty c_n(-a)^n</math> converges. | ||
| + | |- | ||
| + | |Since <math style="vertical-align: 0px">a</math> was an arbitrary number in the interval <math style="vertical-align: -5px">(-R,R),</math> | ||
| + | |- | ||
| + | | <math>\sum_{n=0}^\infty c_n(-x)^n</math> | ||
| + | |- | ||
| + | |converges in the interval <math style="vertical-align: -5px">(-R,R).</math> | ||
|} | |} | ||
Revision as of 16:27, 23 April 2017
If converges, does it follow that the following series converges?
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n}
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n(-x)^n }
| Foundations: |
|---|
| If a power series converges, then it has a nonempty interval of convergence. |
Solution:
(a)
| Step 1: |
|---|
| Assume that the power series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} converges. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} be the radius of convergence of this power series. |
| So, the power series |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} |
| converges in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-R,R).} |
| Step 2: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\in (-2R,2R).} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{2} \in (-R,R).} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} converges in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-R,R),} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n\bigg(\frac{a}{2}\bigg)^n} converges. |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} was an arbitrary number in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-2R,2R),} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n\bigg(\frac{x}{2}\bigg)^n} |
| converges in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-2R,2R).} |
(b)
| Step 1: |
|---|
| Assume that the power series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} converges. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} be the radius of convergence of this power series. |
| So, the power series |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} |
| converges in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-R,R).} |
| Step 2: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\in (-R,R).} Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a \in (-R,R).} |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_nx^n} converges in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-R,R),} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n(-a)^n} converges. |
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} was an arbitrary number in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-R,R),} |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty c_n(-x)^n} |
| converges in the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-R,R).} |
| Final Answer: |
|---|
| (a) converges |
| (b) converges |