Difference between revisions of "009C Sample Midterm 2, Problem 1"

From Math Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' '''L'Hôpital's Rule'''  
+
|'''1.''' '''L'Hôpital's Rule, Part 2'''  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&nbsp; are both zero or both &nbsp;<math style="vertical-align: -1px">\pm \infty .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g</math>&nbsp; be differentiable functions on the open interval &nbsp;<math style="vertical-align: -5px">(a,\infty)</math>&nbsp; for some value &nbsp;<math style="vertical-align: -4px">a,</math>&nbsp;
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; where &nbsp;<math style="vertical-align: -5px">g'(x)\ne 0</math>&nbsp; on &nbsp;<math style="vertical-align: -5px">(a,\infty)</math>&nbsp; and &nbsp;<math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}</math>&nbsp; returns either &nbsp;<math style="vertical-align: -15px">\frac{0}{0}</math>&nbsp; or &nbsp;<math style="vertical-align: -15px">\frac{\infty}{\infty}.</math>&nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&nbsp; is finite or &nbsp;<math style="vertical-align: -4px">\pm \infty ,</math>
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;Then, &nbsp; <math style="vertical-align: -18px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
 
|-
 
|-
 
|'''2.''' The sum of a convergent geometric series is &nbsp; <math>\frac{a}{1-r}</math>
 
|'''2.''' The sum of a convergent geometric series is &nbsp; <math>\frac{a}{1-r}</math>

Revision as of 08:53, 16 April 2017

Evaluate:

(a)  

(b)  


Foundations:  
1. L'Hôpital's Rule, Part 2

        Let    and    be differentiable functions on the open interval    for some value   

        where    on    and    returns either    or   
       Then,  
2. The sum of a convergent geometric series is  
        where    is the ratio of the geometric series
        and    is the first term of the series.


Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       
Now, we have

       

(b)

Step 1:  
First, we not that this is a geometric series with  
Since  
this series converges.
Step 2:  
Now, we need to find the sum of this series.
The first term of the series is  
Hence, the sum of the series is

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam