Difference between revisions of "009B Sample Midterm 3, Problem 4"

From Math Wiki
Jump to navigation Jump to search
Line 60: Line 60:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\int_1^62t^2e^{-t}~dt} & = & \displaystyle{\left. -2t^2e^{-t}-4te^{-t}\right|_1^6+\int_1^6 4e^{-t}}\\
+
\displaystyle{\int_1^62t^2e^{-t}~dt} & = & \displaystyle{\left. (-2t^2e^{-t}-4te^{-t})\right|_1^6+\int_1^6 4e^{-t}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\left. -2t^2e^{-t}-4te^{-t}-4e^{-t}\right|_1^6}\\
+
& = & \displaystyle{\left. (-2t^2e^{-t}-4te^{-t}-4e^{-t})\right|_1^6}\\
 
&&\\
 
&&\\
& = & \displaystyle{-2(6)^2e^{-6}-4(6)e^{-6}-4e^{-6}}-(-2(1)^2e^{-1}-4(1)e^{-1}-4e^{-1}) \\
+
& = & \displaystyle{(-2(6)^2e^{-6}-4(6)e^{-6}-4e^{-6})-(-2(1)^2e^{-1}-4(1)e^{-1}-4e^{-1})} \\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{-100+10e^5}{e^6}.}
 
& = & \displaystyle{\frac{-100+10e^5}{e^6}.}

Revision as of 19:02, 13 April 2017

The rate of reaction to a drug is given by:

where    is the number of hours since the drug was administered.

Find the total reaction to the drug from    to  


Foundations:  
If we calculate    what are we calculating?

        We are calculating    This is the total reaction to the

        drug from    to  


Solution:

Step 1:  
To calculate the total reaction to the drug from    to  
we need to calculate

       

Step 2:  
We proceed using integration by parts.
Let    and  
Then,    and  
Then, we have
      
Step 3:  
Now, we need to use integration by parts again.
Let    and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-t}dt.}
Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=4dt}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-e^{-t}.}
Thus, we get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^62t^2e^{-t}~dt} & = & \displaystyle{\left. (-2t^2e^{-t}-4te^{-t})\right|_1^6+\int_1^6 4e^{-t}}\\ &&\\ & = & \displaystyle{\left. (-2t^2e^{-t}-4te^{-t}-4e^{-t})\right|_1^6}\\ &&\\ & = & \displaystyle{(-2(6)^2e^{-6}-4(6)e^{-6}-4e^{-6})-(-2(1)^2e^{-1}-4(1)e^{-1}-4e^{-1})} \\ &&\\ & = & \displaystyle{\frac{-100+10e^5}{e^6}.} \end{array}}


Final Answer:  
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-100+10e^5}{e^6}}

Return to Sample Exam