Difference between revisions of "009A Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
(Created page with "<span class="exam">Find the derivatives of the following functions. Do not simplify. <span class="exam">(a) <math style="vertical-align: -5px">f(x)=\tan^3(7x^2+5) </m...") |
|||
Line 106: | Line 106: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' <math>3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math> | + | | '''(a)''' <math>f'(x)=3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math> |
|- | |- | ||
− | | '''(b)''' <math>\cos(\cos(e^x))(-\sin(e^x))(e^x)</math> | + | | '''(b)''' <math>g'(x)=\cos(\cos(e^x))(-\sin(e^x))(e^x)</math> |
|- | |- | ||
− | | '''(c)''' <math>\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math> | + | | '''(c)''' <math>h'(x)=\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math> |
|} | |} | ||
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:52, 13 April 2017
Find the derivatives of the following functions. Do not simplify.
(a)
(b)
(c)
Foundations: |
---|
1. Chain Rule |
2. Trig Derivatives |
3. Quotient Rule |
4. Derivative of natural logarithm |
Solution:
(a)
Step 1: |
---|
First, we use the Chain Rule to get |
Step 2: |
---|
Now, we use the Chain Rule again to get |
|
(b)
Step 1: |
---|
First, we use the Chain Rule to get |
Step 2: |
---|
Now, we use the Chain Rule again to get |
|
(c)
Step 1: |
---|
First, we use the Quotient Rule to get |
Step 2: |
---|
Now, we use the Chain Rule to get |
Final Answer: |
---|
(a) |
(b) |
(c) |