Difference between revisions of "009A Sample Midterm 3, Problem 3"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Use the definition of the derivative to compute <math>\frac{dy}{dx}</math> for <math style="vertical-align: -4px">y=3\sqrt{-2x+5}.</mat...") |
|||
| Line 62: | Line 62: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | <math>-\frac{3}{\sqrt{-2x+5}}</math> | + | | <math>\frac{dy}{dx}=-\frac{3}{\sqrt{-2x+5}}</math> |
|- | |- | ||
| | | | ||
|} | |} | ||
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 18:44, 13 April 2017
Use the definition of the derivative to compute for
| Foundations: |
|---|
| Recall |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}} |
Solution:
| Step 1: |
|---|
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=3\sqrt{-2x+5}.} |
| Using the limit definition of the derivative, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2(x+h)+5}-3\sqrt{-2x+5}}{h}}\\ &&\\ & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3\sqrt{-2x+-2h+5}-3\sqrt{-2x+5}}{h}}\\ &&\\ & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{\sqrt{-2x+-2h+5}-\sqrt{-2x+5}}{h}.} \end{array}} |
| Step 2: |
|---|
| Now, we multiply the numerator and denominator by the conjugate of the numerator. |
| Hence, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{(\sqrt{-2x+-2h+5}-\sqrt{-2x+5})}{h} \frac{(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}{(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ &&\\ & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{(-2x+-2h+5)-(-2x+5)}{h(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ &&\\ & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{-2h}{h(\sqrt{-2x+-2h+5}+\sqrt{-2x+5})}}\\ &&\\ & = & \displaystyle{3\lim_{h\rightarrow 0} \frac{-2}{\sqrt{-2x+-2h+5}+\sqrt{-2x+5}}}\\ &&\\ & = & \displaystyle{3\frac{-2}{\sqrt{-2x+5}+\sqrt{-2x+5}}}\\ &&\\ & = & \displaystyle{-\frac{3}{\sqrt{-2x+5}}.} \end{array}} |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}=-\frac{3}{\sqrt{-2x+5}}} |