Difference between revisions of "009A Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Line 102: | Line 102: | ||
\displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim _{x\rightarrow \infty} \frac{(-2x^3-2x+3)}{(3x^3+3x^2-3)} \frac{(\frac{1}{x^3})}{(\frac{1}{x^3})}}\\ | \displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim _{x\rightarrow \infty} \frac{(-2x^3-2x+3)}{(3x^3+3x^2-3)} \frac{(\frac{1}{x^3})}{(\frac{1}{x^3})}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\lim_{x\rightarrow | + | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}. |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 115: | Line 115: | ||
\displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}\\ | \displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{\lim_{x\rightarrow \infty} (-2-\frac{2}{x^2}+\frac{3}{x^3})}{\lim_{x\rightarrow \infty} (3+\frac{3}{x}-\frac{3}{x^3})}}\\ | + | & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow \infty} \bigg(-2-\frac{2}{x^2}+\frac{3}{x^3}\bigg)}}{\displaystyle{\lim_{x\rightarrow \infty} \bigg(3+\frac{3}{x}-\frac{3}{x^3}\bigg)}}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{\lim_{x\rightarrow \infty} -2 +\lim_{x\rightarrow \infty} \frac{2}{x^2} +\lim_{x\rightarrow \infty} \frac{3}{x^3}}{\lim_{x\rightarrow \infty} 3+\lim_{x\rightarrow \infty} \frac{3}{x}-\lim_{x\rightarrow \infty}\frac{3}{x^3}}} \\ | + | & = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow \infty} -2 +\lim_{x\rightarrow \infty} \frac{2}{x^2} +\lim_{x\rightarrow \infty} \frac{3}{x^3}}}{\displaystyle{\lim_{x\rightarrow \infty} 3+\lim_{x\rightarrow \infty} \frac{3}{x}-\lim_{x\rightarrow \infty}\frac{3}{x^3}}}} \\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{-2+0+0}{3+0+0}}\\ | & = & \displaystyle{\frac{-2+0+0}{3+0+0}}\\ |
Revision as of 18:41, 13 April 2017
Find the following limits:
(a) If find
(b) Find
(c) Evaluate
Foundations: |
---|
1. If we have |
2. Recall |
Solution:
(a)
Step 1: |
---|
First, we have |
Therefore, |
Step 2: |
---|
Since we have |
|
Multiplying both sides by we get |
(b)
Step 1: |
---|
First, we write |
Step 2: |
---|
Now, we have |
|
(c)
Step 1: |
---|
First, we have |
Step 2: |
---|
Now, we use the properties of limits to get |
|
Final Answer: |
---|
(a) |
(b) |
(c) |