Difference between revisions of "009A Sample Midterm 1, Problem 1"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Find the following limits: <span class="exam">(a) Find  <math style="vertical-align: -13px">\lim _{x\rightarrow 2} g(x),</math>  provided that &n...")
 
Line 34: Line 34:
 
\displaystyle{5} & = & \displaystyle{\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]}\\
 
\displaystyle{5} & = & \displaystyle{\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\lim_{x\rightarrow 2} (4-g(x))}{\lim_{x\rightarrow 2} x}}\\
+
& = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 2} (4-g(x))}}{\displaystyle{\lim_{x\rightarrow 2} x}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\lim_{x\rightarrow 2} (4-g(x))}{2}.}
+
& = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 2} (4-g(x))}}{2}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}

Revision as of 18:22, 13 April 2017

Find the following limits:

(a) Find    provided that  

(b) Find  

(c) Evaluate  


Foundations:  
1. If    we have
       
2. Recall
       


Solution:

(a)

Step 1:  
Since  
we have
       
Step 2:  
If we multiply both sides of the last equation by    we get
       
Now, using linearity properties of limits, we have
       
Step 3:  
Solving for    in the last equation,
we get

       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       

(c)

Step 1:  
When we plug in    into  
we get  
Thus,
       
is either equal to    or  
Step 2:  
To figure out which one, we factor the denominator to get
       
We are taking a right hand limit. So, we are looking at values of  
a little bigger than    (You can imagine values like   )
For these values, the numerator will be negative.
Also, for these values,    will be negative and    will be positive.
Therefore, the denominator will be negative.
Since both the numerator and denominator will be negative (have the same sign),
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam