Difference between revisions of "009A Sample Midterm 3, Problem 1"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> Find the following limits: <span class="exam">(a) If  <math style="vertical-align: -16px">\lim _{x\rightarrow 3} \bigg(\frac{f(x)}{2x}+1\bigg)=2,</ma...")
 
Line 51: Line 51:
 
\displaystyle{1} & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}}\\
 
\displaystyle{1} & = & \displaystyle{\lim_{x\rightarrow 3} \frac{f(x)}{2x}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\lim_{x\rightarrow 3} f(x)}{\lim_{x\rightarrow} 2x}}\\
+
& = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 3} f(x)}}{\displaystyle{\lim_{x\rightarrow 3} 2x}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{\lim_{x\rightarrow 3} f(x)}{6}.}
+
& = & \displaystyle{\frac{\displaystyle{\lim_{x\rightarrow 3} f(x)}}{6}.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-

Revision as of 18:13, 13 April 2017

Find the following limits:

(a) If    find  

(b) Find  

(c) Evaluate  


Foundations:  
1. If    we have
       
2. Recall
       


Solution:

(a)

Step 1:  
First, we have
       
Therefore,
       
Step 2:  
Since    we have

       

Multiplying both sides by    we get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
First, we have
       
Step 2:  
Now, we use the properties of limits to get

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam