Difference between revisions of "009B Sample Midterm 3, Problem 4"
(Created page with "<span class="exam">Evaluate the integral: ::<math>\int \sin (\ln x)~dx.</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations: |- |'...") |
|||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam"> The rate of reaction to a drug is given by: |
| − | ::<math> | + | ::<math>r'(t)=2t^2e^{-t}</math> |
| + | |||
| + | <span class="exam">where <math style="vertical-align: 0px">t</math> is the number of hours since the drug was administered. | ||
| + | |||
| + | <span class="exam">Find the total reaction to the drug from <math style="vertical-align: -1px">t=1</math> to <math style="vertical-align: 0px">t=6.</math> | ||
| Line 7: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |If we calculate <math style="vertical-align: -14px">\int_a^b r'(t)~dt,</math> what are we calculating? |
|- | |- | ||
| − | | | + | | |
| + | We are calculating <math style="vertical-align: -5px">r(b)-r(a).</math> This is the total reaction to the | ||
|- | |- | ||
| | | | ||
| − | + | drug from <math style="vertical-align: 0px">t=a</math> to <math style="vertical-align: 0px">t=b.</math> | |
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 19: | Line 25: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |To calculate the total reaction to the drug from <math style="vertical-align: -1px">t=1</math> to <math style="vertical-align: -4px">t=6,</math> |
|- | |- | ||
| − | | | + | |we need to calculate |
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| − | + | <math>\int_1^6 r'(t)~dt=\int_1^6 2t^2e^{-t}~dt.</math> | |
|} | |} | ||
| Line 32: | Line 36: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |We proceed using integration by parts. |
| + | |- | ||
| + | |Let <math style="vertical-align: 0px">u=2t^2</math> and <math style="vertical-align: 0px">dv=e^{-t}dt.</math> | ||
|- | |- | ||
| − | | | + | |Then, <math style="vertical-align: -1px">du=4t~dt</math> and <math style="vertical-align: 0px">v=-e^{-t}.</math> |
|- | |- | ||
| − | | | + | |Then, we have |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -14px">\int_1^62t^2e^{-t}~dt=\left. -2t^2e^{-t}\right|_1^6+\int_1^6 4te^{-t}~dt.</math> |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|} | |} | ||
| Line 49: | Line 50: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | | | + | |Now, we need to use integration by parts again. |
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: 0px">u=4t</math> and <math style="vertical-align: 0px">dv=e^{-t}dt.</math> |
|- | |- | ||
| − | | | + | |Then, <math style="vertical-align: -1px">du=4dt</math> and <math style="vertical-align: 0px">v=-e^{-t}.</math> |
| − | |||
|- | |- | ||
| − | | | + | |Thus, we get |
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
| − | + | \displaystyle{\int_1^62t^2e^{-t}~dt} & = & \displaystyle{\left. -2t^2e^{-t}-4te^{-t}\right|_1^6+\int_1^6 4e^{-t}}\\ | |
| − | + | &&\\ | |
| − | + | & = & \displaystyle{\left. -2t^2e^{-t}-4te^{-t}-4e^{-t}\right|_1^6}\\ | |
| − | | | + | &&\\ |
| − | + | & = & \displaystyle{-2(6)^2e^{-6}-4(6)e^{-6}-4e^{-6}}-(-2(1)^2e^{-1}-4(1)e^{-1}-4e^{-1}) \\ | |
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{-100+10e^5}{e^6}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | <math>\frac{ | + | | <math>\frac{-100+10e^5}{e^6}</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 11:20, 9 April 2017
The rate of reaction to a drug is given by:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r'(t)=2t^2e^{-t}}
where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} is the number of hours since the drug was administered.
Find the total reaction to the drug from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=1} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=6.}
| Foundations: |
|---|
| If we calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b r'(t)~dt,} what are we calculating? |
|
We are calculating Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r(b)-r(a).} This is the total reaction to the |
|
drug from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=a} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=b.} |
Solution:
| Step 1: |
|---|
| To calculate the total reaction to the drug from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=1} to |
| we need to calculate |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^6 r'(t)~dt=\int_1^6 2t^2e^{-t}~dt.} |
| Step 2: |
|---|
| We proceed using integration by parts. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=2t^2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-t}dt.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=4t~dt} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-e^{-t}.} |
| Then, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_1^62t^2e^{-t}~dt=\left. -2t^2e^{-t}\right|_1^6+\int_1^6 4te^{-t}~dt.} |
| Step 3: |
|---|
| Now, we need to use integration by parts again. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=4t} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dv=e^{-t}dt.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=4dt} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v=-e^{-t}.} |
| Thus, we get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_1^62t^2e^{-t}~dt} & = & \displaystyle{\left. -2t^2e^{-t}-4te^{-t}\right|_1^6+\int_1^6 4e^{-t}}\\ &&\\ & = & \displaystyle{\left. -2t^2e^{-t}-4te^{-t}-4e^{-t}\right|_1^6}\\ &&\\ & = & \displaystyle{-2(6)^2e^{-6}-4(6)e^{-6}-4e^{-6}}-(-2(1)^2e^{-1}-4(1)e^{-1}-4e^{-1}) \\ &&\\ & = & \displaystyle{\frac{-100+10e^5}{e^6}.} \end{array}} |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-100+10e^5}{e^6}} |