Difference between revisions of "009B Sample Midterm 3, Problem 3"
Jump to navigation
Jump to search
(Created page with "<span class="exam"> Compute the following integrals: ::<span class="exam">a) <math>\int x^2\sin (x^3) ~dx</math> ::<span class="exam">b) <math>\int_{-\frac{\pi}{4}}^{\frac{\...") |
|||
Line 1: | Line 1: | ||
<span class="exam"> Compute the following integrals: | <span class="exam"> Compute the following integrals: | ||
− | + | <span class="exam">(a) <math>\int x^2\sin (x^3) ~dx</math> | |
− | + | ||
+ | <span class="exam">(b) <math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx</math> | ||
Line 8: | Line 9: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |How would you integrate <math style="vertical-align: -5px">2x(x^2+1)^3~dx?</math> | + | |How would you integrate <math style="vertical-align: -5px">2x(x^2+1)^3~dx?</math> |
|- | |- | ||
| | | | ||
− | + | You could use <math style="vertical-align: 0px">u</math>-substitution. | |
+ | |- | ||
+ | | Let <math style="vertical-align: -3px">u=x^2+1.</math> | ||
+ | |- | ||
+ | | Then, <math style="vertical-align: -1px">du=2x~dx.</math> | ||
+ | |- | ||
+ | | Thus, | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\ | \displaystyle{\int 2x(x^2+1)^3~dx} & = & \displaystyle{\int u^3~du}\\ | ||
&&\\ | &&\\ | ||
Line 22: | Line 29: | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 29: | Line 37: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We proceed using <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -1px">u=x^3.</math> Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math> | + | |We proceed using <math style="vertical-align: 0px">u</math>-substitution. |
+ | |- | ||
+ | |Let <math style="vertical-align: -1px">u=x^3.</math> | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: -1px">du=3x^2~dx</math> and <math style="vertical-align: -14px">\frac{du}{3}=x^2~dx.</math> | ||
|- | |- | ||
|Therefore, we have | |Therefore, we have | ||
|- | |- | ||
| | | | ||
− | + | <math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math> | |
|} | |} | ||
Line 43: | Line 55: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
− | \displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{ | + | \displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{-\frac{1}{3}\cos(u)+C}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{-\frac{1}{3}\cos(x^3)+C.}\\ |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 54: | Line 66: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We proceed using u substitution. |
+ | |- | ||
+ | |Let <math style="vertical-align: -5px">u=\cos(x).</math> | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: -5px">du=-\sin(x)~dx.</math> | ||
|- | |- | ||
|Since this is a definite integral, we need to change the bounds of integration. | |Since this is a definite integral, we need to change the bounds of integration. | ||
|- | |- | ||
− | |We have <math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math> | + | |We have |
+ | |- | ||
+ | | <math style="vertical-align: -15px">u_1=\cos\bigg(-\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -15px">u_2=\cos\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}.</math> | ||
|} | |} | ||
Line 64: | Line 82: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Therefore, we get |
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ | \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\ | ||
&&\\ | &&\\ | ||
Line 75: | Line 93: | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' <math>\frac{ | + | | '''(a)''' <math>-\frac{1}{3}\cos(x^3)+C</math> |
|- | |- | ||
− | | '''(b)''' <math>0</math> | + | | '''(b)''' <math>0</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:20, 9 April 2017
Compute the following integrals:
(a)
(b)
Foundations: |
---|
How would you integrate |
You could use -substitution. |
Let |
Then, |
Thus, |
|
Solution:
(a)
Step 1: |
---|
We proceed using -substitution. |
Let |
Then, and |
Therefore, we have |
|
Step 2: |
---|
We integrate to get |
|
(b)
Step 1: |
---|
We proceed using u substitution. |
Let |
Then, |
Since this is a definite integral, we need to change the bounds of integration. |
We have |
and |
Step 2: |
---|
Therefore, we get |
|
Final Answer: |
---|
(a) |
(b) |