Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Math Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">State the fundamental theorem of calculus, and use this theorem to find the derivative of ::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du.</math> {...")
 
Line 7: Line 7:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of <math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math>
+
|What does Part 1 of the Fundamental Theorem of Calculus  
 +
|-
 +
|say is the derivative of &nbsp;<math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math>
 
|-
 
|-
 
|
 
|
::First, we need to switch the bounds of integration.  
+
&nbsp;&nbsp;&nbsp;&nbsp; First, we need to switch the bounds of integration.  
 
|-
 
|-
 
|
 
|
::So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math>
+
&nbsp;&nbsp;&nbsp;&nbsp; So, we have &nbsp;<math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|-
 
|
 
|
::By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>  
+
&nbsp;&nbsp;&nbsp;&nbsp; By Part 1 of the Fundamental Theorem of Calculus, &nbsp;<math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>  
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 26: Line 29:
 
|-
 
|-
 
|
 
|
:Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
+
Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|-
 
|
 
|
:Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math>
+
Then, &nbsp;<math style="vertical-align: -1px">F</math>&nbsp; is a differentiable function on &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|-
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
 
|
 
|
:Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math>
+
Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -1px">F</math>&nbsp; be any antiderivative of &nbsp;<math style="vertical-align: -5px">f.</math> Then,
 
|-
 
|-
 
|
 
|
:Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
|}
  
Line 43: Line 46:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|First, we have
+
|First,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
::<math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
 
 
|-
 
|-
|Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>  
+
|Now, let &nbsp;<math style="vertical-align: -5px">g(x)=\cos(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>  
 
|-
 
|-
|So,  
+
|Therefore,  
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -5px">F(x)=-G(g(x)).</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=-G(g(x)).</math>
 +
|-
 +
|Hence,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math>  
 
|-
 
|-
|Hence, <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math> by the Chain Rule.
+
|by the Chain Rule.
 
|}
 
|}
  
Line 61: Line 67:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Now, <math style="vertical-align: -5px">g'(x)=-\sin(x).</math>
+
|Now,  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">g'(x)=-\sin(x).</math>
 
|-
 
|-
 
|By the Fundamental Theorem of Calculus,  
 
|By the Fundamental Theorem of Calculus,  
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math>
 
|-
 
|-
 
|Hence,
 
|Hence,
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\
 
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\
 
&&\\
 
&&\\
Line 77: Line 85:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''The Fundamental Theorem of Calculus, Part 1'''
+
|&nbsp; &nbsp; &nbsp; &nbsp; See Step 1 above
|-
 
|
 
:&nbsp;&nbsp; Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|
 
:&nbsp;&nbsp; Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|-
 
|&nbsp;&nbsp; '''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|
 
:&nbsp;&nbsp; Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math>
 
|-
 
|
 
:&nbsp;&nbsp; Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
 
|-
 
|-
|&nbsp;&nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
+
|&nbsp;&nbsp; &nbsp; &nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:19, 9 April 2017

State the fundamental theorem of calculus, and use this theorem to find the derivative of

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du.}


Foundations:  
What does Part 1 of the Fundamental Theorem of Calculus
say is the derivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?}

     First, we need to switch the bounds of integration.

     So, we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.}

     By Part 1 of the Fundamental Theorem of Calculus,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G'(x)=-\frac{1}{1+x^{10}}.}


Solution:

Step 1:  
The Fundamental Theorem of Calculus, Part 1

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   be continuous on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]}   and let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=\int_a^x f(t)~dt.}

Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F}   is a differentiable function on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=f(x).}

The Fundamental Theorem of Calculus, Part 2

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   be continuous on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]}   and let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F}   be any antiderivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f.} Then,

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)~dx=F(b)-F(a).}

Step 2:  
First,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.}
Now, let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\cos(x)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x)=\int_5^x \frac{1}{1+u^{10}}~du.}
Therefore,

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=-G(g(x)).}

Hence,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=-G'(g(x))g'(x)}
by the Chain Rule.
Step 3:  
Now,
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=-\sin(x).}
By the Fundamental Theorem of Calculus,

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G'(x)=\frac{1}{1+x^{10}}.}

Hence,

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\ &&\\ & = & \displaystyle{\frac{\sin(x)}{1+\cos^{10}x}.}\\ \end{array}}


Final Answer:  
        See Step 1 above
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=\frac{\sin(x)}{1+\cos^{10}x}}

Return to Sample Exam