Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Line 7: | Line 7: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
− | |||
− | |||
|- | |- | ||
− | |'''1.''' | + | |'''1.''' Recall the trig identity |
|- | |- | ||
− | | | + | | <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
|- | |- | ||
− | |How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | + | |'''2.''' Recall |
+ | |- | ||
+ | | <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | ||
+ | |- | ||
+ | |'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | ||
|- | |- | ||
| | | | ||
− | + | You can use <math style="vertical-align: 0px">u</math>-substitution. | |
+ | |- | ||
+ | | Let <math style="vertical-align: -2px">u=\tan x.</math> | ||
+ | |- | ||
+ | | Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | ||
|- | |- | ||
| | | | ||
− | + | Thus, | |
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
\displaystyle{\int \sec^2(x)\tan(x)~dx} & = & \displaystyle{\int u~du}\\ | \displaystyle{\int \sec^2(x)\tan(x)~dx} & = & \displaystyle{\int u~du}\\ | ||
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{u^2}{2}+C}\\ | & = & \displaystyle{\frac{u^2}{2}+C}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{\tan^2x}{2}+C.} | + | & = & \displaystyle{\frac{\tan^2x}{2}+C.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
Line 36: | Line 44: | ||
|First, we write | |First, we write | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> |
− | + | |- | |
+ | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> | ||
|- | |- | ||
− | | | + | |we have |
|- | |- | ||
− | | | + | | <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> |
− | |||
|- | |- | ||
− | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get | + | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get |
|- | |- | ||
− | | | + | | |
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\ | \displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\ | ||
&&\\ | &&\\ | ||
& = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx}\\ | & = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx | + | & = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx} |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |using the identity again on the last equality. | + | |by using the identity again on the last equality. |
|} | |} | ||
Line 63: | Line 71: | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> |
− | + | |- | |
+ | |For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -5px">u=\tan(x).</math> | ||
|- | |- | ||
− | | | + | |Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx.</math> |
− | |||
|} | |} | ||
Line 80: | Line 90: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\ | \displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{\tan^3(x)}{3}-\tan(x)+x+C.} | + | & = & \displaystyle{\frac{\tan^3(x)}{3}-\tan(x)+x+C.} |
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> | + | | <math>\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:16, 9 April 2017
Evaluate the integral:
Foundations: |
---|
1. Recall the trig identity |
2. Recall |
3. How would you integrate |
You can use -substitution. |
Let |
Then, |
Thus, |
Solution:
Step 1: |
---|
First, we write |
Using the trig identity |
we have |
Plugging in the last identity into one of the we get |
|
by using the identity again on the last equality. |
Step 2: |
---|
So, we have |
For the first integral, we need to use -substitution. |
Let |
Then, |
So, we have |
Step 3: |
---|
We integrate to get |
|
Final Answer: |
---|